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Abstract
New expressions for the multipole moments of an isolated post-Newtonian
source, in the form of surface integrals in the outer near-zone, are derived. As
an application we compute the ‘source’ quadrupole moment of a Schwarzschild
solution boosted to uniform velocity, at the third post-Newtonian (3PN) order.
We show that the consideration of this boosted Schwarzschild solution (BSS)
is enough to uniquely determine one of the ambiguity parameters in the recent
computation of the gravitational wave generation by compact binaries at 3PN
order: ζ = −7/33. We argue that this value is the only one for which the
Poincaré invariance of the 3PN wave generation formalism is realized. As a
check, we confirm the value of ζ by a different method, based on the far-zone
expansion of the BSS at fixed retarded time, and a calculation of the relevant
nonlinear multipole interactions in the external metric at the 3PN order.

PACS numbers: 04.25.−g, 04.30.−w

1. Introduction

The first aim of the present paper is to obtain, in the continuation of previous work [1, 2], some
new expressions for the multipole moments of an isolated gravitating source within the post-
Newtonian (PN) approximation scheme of general relativity. The ‘source’ multipole moments,
as they were derived in [2], are given, for any multipolar order �, by certain functionals of the
PN expansion of the pseudo-tensor of the matter and gravitational fields, formally valid up to
any PN order. The moments have been obtained by solving the matching equation between
the inner PN field and the outer multipolar expansion. They represent the generalization of
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the 1PN multipole moments obtained earlier in [3–5]5. The source moments are those which
parametrize the ‘multipolar-post-Minkowskian’ (MPM) expansion of the external field of the
source, as it was defined and investigated in [6].

In [2] the PN moments have been given in the form of some volume integrals, whose
support is non-compact because of the contribution of the gravitational field, and extending
therefore over the full three-dimensional space. However, as we recall below, their integrand
is made from the PN expansion of the stress–energy pseudo tensor τµν , whose physical
validity is restricted to the near-zone of the source. The formal extension of the integrals
to r ≡ |x| → +∞ was (uniquely) defined by introducing a suitable procedure of analytic
continuation.

In the present paper, we derive some equivalent expressions for the PN source moments,
in the form of surface integrals, formally performed at r → +∞. However let us emphasize
that the physical meaning of the limit r → +∞ (which is taken after the PN limit c → +∞),
corresponds to considering what one can call the outer near-zone, namely the region which
is at once far from the source, r � (source radius), and still within the near-zone, i.e. r �
(wavelength). For some physical problems, such alternative surface-integral expressions of
the PN moments can be quite useful, as the next result of our paper will illustrate.

Indeed, our second aim is to make a contribution to the problem of theoretical templates of
inspiralling compact binaries for gravitational-wave experiments such as LIGO and VIRGO.
Current calculations of the gravitational waves are based on the expressions of the PN source
multipole moments [1, 2], as well as on high-order post-Minkowskian iteration of the external
field [6–8]. The mass-type quadrupole moment has been computed in the case of compact
binary systems up to the 2PN order [9, 10] and more recently at 3PN order [11, 12]. The
physical motivation for such high-order PN calculations of compact binary inspiral can be
found in [13–19].

It has been shown in [11] that at 3PN order the radiation field of compact binaries,
modelled as systems of point particles, contains three ambiguity parameters, ξ, κ and ζ , due
to an incompleteness of the Hadamard self-field regularization, used in the computation of the
quadrupole moment of point particles at the 3PN order. In the present paper we shall show
how one can determine the value of one of these parameters, ζ , without any use of a self-field
regularization scheme. The idea is to consider the situation where one of the two masses is
exactly zero. Such a limiting case corresponds to a single-particle moving with some uniform
velocity. As it turns out, the ambiguity parameter ζ , but only this one, survives in this limit.
We can therefore compute it from the particular case of the 3PN quadrupole moment generated
by a single object, specifically a spherically symmetric extended matter distribution, moving
with uniform velocity in the preferred reference frame with respect to which the multipole
moments are defined. The external gravitational field of such an object is evidently physically
equivalent to a boosted Schwarzschild solution (BSS), i.e. a Schwarzschild solution viewed in
a frame which is obtained from the usual ‘Schwarzschild rest frame’ by a Lorentz boost.

To compute the multipole moments of the BSS we propose and implement two methods.
The first one is to insert the metric of the BSS into our new expressions for the PN multipole
moments in terms of surface integrals in the outer near-zone. The second method, substantially
more involved, consists of computing the far-zone or ‘radiative’ moments6 of the BSS by
expanding the metric in the far zone at fixed retarded time, and comparing the result with an

5 As usual the nPN approximation refers to all the terms up to the relative order ∼1/c2n, where c is the speed of
light. Powers of c and the gravitational constant G will generally be explicitly displayed here.
6 Although the BSS does not radiate gravitational waves, it is sometimes convenient to employ a language for the
different types of multipole moments which is similar to the one used in the more general case of non-stationary
matter systems.
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analytic calculation of the various nonlinear multipole interactions occurring in the far-zone
moments up to 3PN order. The source-type moment will thereby be determined in an indirect
way. We find that the results of the two methods agree, and uniquely determine

ζ = − 7
33 . (1.1)

We argue below that (1.1) is the unique value for which the 3PN wave generation
formalism, as applied to binary systems in [11, 12], incorporates the global Lorentz–Poincaré
invariance of general relativity. We have already reported elsewhere [20] that dimensional
regularization leads to the same value for ζ (as well as the determination of the values of the two
other ambiguity parameters ξ and κ), and therefore has the important feature of ‘automatically’
preserving the Poincaré invariance of the formalism. The calculation of ζ is similar to the one
of its analogue in the 3PN equations of motion of point particle binaries, namely the so-called
‘kinetic’ ambiguity constant ωk [21, 22], which has also been fixed from the requirement of
Poincaré invariance, either by using an appropriate Lorentz-invariant version of Hadamard’s
regularization at the level of the equations of motion [23, 24], or by direct imposition that
the ADM Hamiltonian be compatible with the existence of phase-space generators satisfying
the Poincaré algebra [25]. (The second and last ambiguity in the 3PN equations of motion
is the ‘static’ ambiguity constant ωs [21, 22] equivalent to the ambiguity parameter λ

[23, 24]. Both ωs and λ (as well as ωk in fact) have been obtained by means of dimensional
regularization [26, 27]. The same results have also been achieved in [28, 29] by expressing
the equations of motion at 3PN order in terms of surface integrals surrounding the compact
objects.)

The paper is organized as follows. Section 2 is devoted to a general investigation of the
PN source multipole moments of extended matter sources. In section 2.1 we present some
useful reminders of the formulation of the PN moments, and in section 2.2 we obtain our new
expressions of these moments in terms of surface integrals in the outer (or far) near-zone.
Section 3 is devoted to the investigation of the multipole moments of the BSS. In section 3.1
we apply the new expressions of the PN source quadrupole moment to the case of the BSS and
obtain the crucial coefficient which yields equation (1.1) by comparison with the BSS limit of
the quadrupole moment of compact binaries. In section 3.2 we expand the field of the BSS
at retarded infinity and obtain the radiative-type quadrupole moment, which we then relate to
the source-type moment by computing the nonlinear multipole interactions therein up to 3PN
order (the technical details of the nonlinear iteration are relegated to the appendix). In this
way we are able to confirm the value (1.1).

2. Multipole moments as surface integrals

2.1. Reminders of the PN multipole moments

As gravitational field variable we employ the standard ‘Gothic metric deviation’ from flat
spacetime, that we shall subject all over this paper to the condition of harmonic coordinates,
meaning that

hµν ≡ √−ggµν − ηµν, (2.1a)

∂νh
µν = 0, (2.1b)

where g denotes the determinant and gµν the inverse of the covariant metric: g = det(gρσ )

and gµνgνσ = δµ
σ , and where ηµν is the Minkowski metric written in Cartesian coordinates:

ηµν = diag(−1, 1, 1, 1). The Einstein field equations, relaxed by the harmonic-coordinates
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condition, read as

�hµν = 16πG

c4
τµν, (2.2)

where � ≡ �η is the flat spacetime d’Alembertian or wave operator, and τµν denotes the total
stress–energy pseudo tensor of the matter and gravitational fields in harmonic coordinates,
given by

τµν ≡ |g|T µν +
c4

16πG
�µν[h]. (2.3)

Here T µν is the matter stress–energy tensor, and �µν is proportional to the stress–energy
distribution of the gravitational field—�µν is a functional of the field strength h or, more
precisely, a function of h and its first and second spacetime derivatives (∼∂h and ∂2h), at least
quadratic in h, ∂h or ∂2h. The pseudo tensor τµν is conserved in a Minkowskian sense,

∂ντ
µν = 0, (2.4)

which is equivalent to the equation of motion of the matter source: ∇νT
µν = 0.

In principle one can solve equation (2.2) by successive iterations in the order of
nonlinearity, i.e. by a formal expansion in powers of Newton’s constant G. This would
constitute what one calls the post-Minkowskian expansion (with explicit consideration of
the matter source terms). However, such a straightforward post-Minkowskian expansion does
not lead to easily implementable iterations (see, e.g., [30, 31]). Another scheme, technically
more useful, consists of splitting the problem of solving (2.2) into three sub-problems. First,
one solves the vacuum equations, obtained by setting the matter stress–energy tensor T µν to
zero in equation (2.3), by a particular post-Minkowskian expansion. Second, one solves the
full inhomogeneous Einstein equations (2.2) by a formal PN expansion, in inverse powers of
the velocity of light c (with G fixed). And third, one combines together these two expansions
by means of an appropriate variant of the method of matched asymptotic expansions.

The particular post-Minkowskian scheme we use to solve the vacuum Einstein equations
is the so-called ‘multipolar-post-Minkowskian’ (MPM) expansion of the metric exterior to
the source [6]. This expansion combines a nonlinearity expansion in powers of G, with a
multipolar expansion of the successive nonlinear iterations of hµν , say h

µν
n , i.e. essentially

a decomposition of each function h
µν
n (t, r, θ, ϕ) in tensorial spherical harmonics on the unit

sphere parametrized by θ and ϕ. It will be convenient, following [2], to denote the MPM
expansion of some quantity like hµν , asM(hµν), where the calligraphic letterM serves mainly
the purpose of reminding the multipolar aspect of the expansion. (The post-Minkowskian
aspect, though playing a crucial role in the definition and especially the construction of MPM
metrics in [6], is less important to keep in mind in the reasoning that we shall follow below.)
The MPM expansion of the metric is thus written as

M(hµν) =
+∞∑
n=1

Gnhµν
n , (2.5)

where one must always have in mind that each term h
µν
n (t, r, θ, ϕ) is decomposed in tensorial

spherical harmonics (for instance STF tensorial harmonics like in [6]). The successive post-
Minkowskian coefficients h

µν
n are constructed iteratively from the linearized approximation

h
µν

1 by solving the harmonic-coordinates vacuum field equations. These consist of the
harmonicity condition ∂νM(hµν) = 0 and

�M(hµν) = M(�µν), (2.6)

where M(�µν) means �µν in which we substitute for h, ∂h, ∂2h their multipolar expansion:
M(�µν) ≡ �µν[M(h)]. Again we stress that M(some field) refers to a quantity which is
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supposed to be decomposed in a spherical-harmonics expansion (with coefficients being some
functions of t and r).

The algorithm to explicitly construct the successive post-Minkowskian coefficients h
µν
n ,

from knowledge of the linearized approximation h
µν

1 , was given in [6]. As everything depends
on h

µν

1 , the parametrization of the linearized approximation will determine the full MPM
metric (2.5). In our approach the source multipole moments are defined as the ‘seed moments’
that one introduces at the start of the MPM scheme to parametrize the linearized approximation
h

µν

1 .
With full generality one can write the linearized metric h

µν

1 , which satisfies � h
µν

1 = 0
together with ∂νh

µν

1 = 0, in the form

h
µν

1 = h
µν

can1 + ∂µϕν
1 + ∂νϕ

µ

1 − ηµν∂λϕ
λ
1 , (2.7)

where ϕ
µ

1 is a linearized gauge transformation vector (satisfying � ϕ
µ

1 = 0, so the harmonic
gauge condition is preserved), and where h

µν

can1 represents a useful form of the linearized
multipolar metric, called ‘canonical’ and introduced in [32]. The mass-type and current-
type source multipole moments, IL(t) and JL(t), respectively, are symmetric and trace-free
(STF) tensors with respect to their � indices (� is the multipolar order). They parametrize the
canonical metric via the following definition:

h00
can 1 = − 4

c2

+∞∑
�=0

(−)�

�!
∂L

[
1

r
IL(u)

]
, (2.8a)

h0i
can 1 = 4

c3

+∞∑
�=1

(−)�

�!

{
∂L−1

[
1

r
İ iL−1(u)

]
+

�

� + 1
εiab∂aL−1

[
1

r
JbL−1(u)

]}
, (2.8b)

h
ij

can 1 = − 4

c4

+∞∑
�=2

(−)�

�!

{
∂L−2

[
1

r
Ï ijL−2(u)

]
+

2�

� + 1
∂aL−2

[
1

r
εab(i J̇ j)bL−2(u)

]}
. (2.8c)

Our notation is standard7. In addition, the components of the gauge transformation vector ϕ
µ

1
can be parametrized by four other sequences of multipole moments, called WL,XL, YL and
ZL, also being STF in their indices L, in the way specified by equation (4.13) in [2], i.e.

ϕ0
1 = 4

c3

+∞∑
�=0

(−)�

�!
∂L

[
1

r
WL(u)

]
, (2.9a)

ϕi
1 = − 4

c4

+∞∑
�=0

(−)�

�!
∂iL

[
1

r
XL(u)

]

− 4

c4

+∞∑
�=1

(−)�

�!

{
∂L−1

[
1

r
YiL−1(u)

]
+

�

� + 1
εiab∂aL−1

[
1

r
ZbL−1(u)

]}
. (2.9b)

The complete set of moments parametrizing the linearized approximation (2.7) with (2.8)
and (2.9), i.e. {IL, JL,WL,XL, YL, ZL}, is collectively referred to as the source multipole
moments. All these moments are defined in such a way that they admit a nonzero finite

7 L ≡ i1 · · · i� denotes a multi-index composed of � multipolar indices i1, . . . , i�; ∂L ≡ ∂i1 · · · ∂i� means a product of
� partial derivatives ∂i ≡ ∂/∂xi ; similarly xL ≡ xi1 · · · xi� is a product of � spatial vectors xi ≡ xi ; symmetric-trace-
free products are denoted with hats so that x̂L ≡ STF(xL); sometimes we shall also use some brackets surrounding
the STF indices: x〈L〉 ≡ x̂L; the dots refer to the partial time derivation; εabi is the Levi–Civita totally antisymmetric
symbol (such that ε123 = 1); index symmetrization means (ij) ≡ ij+ji

2 ; and r ≡ |x| and u ≡ t − r/c.
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Newtonian limit, when c → +∞. It is clear that the most important of these moments are the
mass-type moment IL and the current-type one JL. Indeed the other moments, WL, . . . , ZL,
parametrize a gauge transformation and thus do not play any physical role at the linearized
order (though they do play a role at the nonlinear level).

In section 3.2 we shall also recall the definition of two and only two sets of moments,
named the ‘canonical’ moments, denoted by {ML, SL}, which are physically equivalent to the
complete set of six source moments {IL, JL, . . . , ZL}, in the sense that they describe the same
external gravitational field. However, following [2], we prefer to reserve the name of source
moments to the set IL, JL, . . . , ZL because they are connected via some analytic closed form
expressions to the stress–energy tensor of a PN source.

The MPM algorithm computes sequentially any of the nonlinear coefficients in
equation (2.5) as follows [6, 33]8. Suppose that the first n − 1 coefficients h1, . . . , hn−1,
where h1 is given by equations (2.7)–(2.9), have been constructed. We then have to solve, at
the nth order, the inhomogeneous wave equation,

�hµν
n = �µν

n , (2.10)

whose source term is known from the previous iterations, i.e. �
µν
n = �

µν
n [h1, . . . , hn−1], and

where as always we also have to satisfy the coordinate condition ∂νh
µν
n = 0. The solution,

satisfying a condition of ‘stationarity in the past’ ensuring that the correct boundary conditions
at Minkowskian past null-infinity are satisfied, reads

hµν
n = uµν

n + vµν
n . (2.11)

The first term represents the standard retarded integral operator (denoted by �−1
R below)

acting on the nonlinear source, but augmented by a specific regularization scheme to deal with
the divergencies of the retarded integral introduced by the fact that the multipolar expansion
diverges at the origin of the spatial coordinates, when r ≡ |x| → 0 (see, e.g., equation (2.8)).
Posing

uµν
n = FP

B=0
� −1

R

[( r

r0

)B

�µν
n

]
, (2.12)

we do solve the required wave equation, i.e. � u
µν
n = �

µν
n , provided that the finite part

(FP) takes the meaning specified below. The second term in equation (2.11) represents a
particular homogeneous solution, i.e. � v

µν
n = 0, defined in such a way that the harmonic

gauge condition ∂νh
µν
n = 0 is satisfied at this order (see [6, 33] for the details).

To define the FP process we multiply the source term in equation (2.10) by a factor (r/r0)
B ,

where B ∈ C and r0 denotes some arbitrary length scale, we compute the B-dependent retarded
integral in the domain of the complex B plane in which it converges, i.e. for which �(B) is
initially a large enough positive number, and we define it in a neighbourhood of the value of
interest B = 0 by analytic continuation. The finite part in (2.12) means the coefficient a0 of the
zero-th power of B in the Laurent expansion

∑
apBp (where p ∈ Z) of the retarded integral

when B → 0. We emphasize that the divergencies cured by the FP regularization in (2.12)
are ultraviolet (UV) type divergencies (r → 0). As we shall see the same FP regularization
will be used in the multipole moments to deal with their infra-red (IR) divergencies (when
r → +∞).

In order to prevent any confusion, let us clarify the meaning of the various expansions
that we shall use, and of the limits r → 0 and r → +∞ that will arise in the present
paper. First, we recall that any MPM-expanded quantity is always thought of as written

8 In this paper we adopt a slightly modified version of the MPM algorithm, defined in section 2 of [33], which is
more convenient in practical computations.
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as a double expansion: one expansion in powers of G and one in spherical harmonics, say
hn = ∑

� n̂LFL, where L denotes a multi-index which carries an irreducible representation
of the rotation group (we do not write spacetime indices). Then, each of the coefficients of
this double expansion is given by some explicit function of t and r, say FL(t, r, c), where we
have also indicated a dependence on the velocity of light c (cf for instance the simple case
of the linearized approximation above). An important technical aspect of our formalism is
that we shall consider these functions FL(t, r, c) in the whole range of the radial coordinate
r, even if this range does not correspond to a spacetime region where the corresponding
expansion is physically valid. Moreover, we shall sometimes consider instead of the original
MPM coefficients FL(t, r, c) their PN expansion (or ‘near-zone expansion’), which means
technically a formal expansion in powers of 1/c (with possibly some powers of ln c). We
shall denote the PN expansion of any quantity by an overline. For instance, FL(t, r, c)

denotes the expansion in powers of 1/c of FL(t, r, c), when keeping fixed the variables r
and t.

We deal sometimes (as in equation (2.12) above) with functions FL(t, r, c) in the region
r → 0, which is mathematically well defined (by real analytic continuation in r) but which
physically corresponds to a region where the vacuum MPM metric should be replaced by a
solution of the inhomogeneous Einstein equations, and therefore where the actual physical
function would be a different function of r (and t) than FL(t, r, c). On the other hand,
the limit r → +∞ is acceptable both mathematically and physically for FL(t, r, c) because
it comes from a post-Minkowskian expansion which is valid all over the exterior of the
source. However, we shall also mathematically deal with the PN re-expansion FL(t, r, c)

of the function FL(t, r, c), and then formally consider the function FL(t, r, c) in the limit
r → +∞. Mathematically, the behaviour of FL(t, r, c) when r → +∞ is again well defined
(by real analytic continuation in r) for each term FL(t, r, c) in the MPM expansion. Though
the limit r → +∞ seems physically incorrect for a PN expansion, it is here technically (or
mathematically) well defined. We stress that the PN limit c → +∞ is taken before considering
the r → +∞ behaviour. If we remember that the PN expansion is physically valid only in
the near-zone of the source, defined as r � cT , where T is a characteristic time of variation
of the source, we see that the physical domain of validity of the r → +∞ expansion of the
PN expanded functions FL(t, r, c) actually corresponds to the outer part of the near-zone,
i.e. when r is much larger than the size, say a, of the source (multipole expansion), but still
significantly smaller than a gravitational wavelength λ ∼ cT . We shall often refer to this
domain as the far near-zone.

As explained in [6], in order to be able to define the behaviour for r → 0 and r → +∞ of
all the coefficients FL(t, r, c) appearing in the successive iterations of the MPM scheme one
needs to make some formal technical assumptions: one must start with only a finite number
of ‘seed’ multipole moments, assume that they are infinitely differentiable functions of time,
and that they tend to some constants in the infinite past. In our approach we assume that these
requirements are initially satisfied, and we formally take, at the end of the calculation, a limit
where these requirements are relaxed (so that we extend our results to an infinite number of
moments, which are not necessarily past-stationary).

The MPM expansion, sketched above, must be completed by an expansion scheme which
covers the source. This is done by considering also a PN approximation for solving the
inhomogeneous Einstein equations. The PN scheme is a priori valid in the near-zone
(r � cT ), while the MPM one is valid in the exterior of the source (r > a). The two
domains of validity overlap in the exterior near-zone (a < r � cT ). One then imposes a
‘matching condition’ which will enable us to determine the values of the multipole moments
as functionals of the PN source. If we denote as above by hµν the PN expansion the matching
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condition can be expressed as

M(hµν) ≡ M(hµν), (2.13)

which says that the multipolar re-expansion of the PN metric hµν agrees, in the sense of
formal series, with the near-zone re-expansion (also denoted with an overbar) of the MPM
metric M (hµν). If we consider that a multipolar expansion is essentially an expansion
in inverse powers of r when r gets far away from the source, we can roughly summarize
the matching equation (2.13) as saying that the far expansion (r → +∞, t = const)
of the near-zone metric—the LHS of equation (2.13)—coincides with the near expansion
(r/cT → 0, t = const) of the far (multipolar-expanded) metric—the RHS of (2.13). The
common general structure of both sides of (2.13) will be given in equations (2.21) and (2.22).

In [2] the PN source moments were obtained as functionals of the PN expansion of the
pseudo-stress energy tensor defined by equation (2.3), namely τµν . For the main source
moments IL and JL (with any � � 2) we get

IL(t) = 1

c2
FP
B=0

∫
d3x

(
r

r0

)B ∫ 1

−1
dz

{
δ�(z)x̂L(τ 00 + τ ii)(x, t + zr/c)

− 4(2� + 1)

(� + 1)(2� + 3)
δ�+1(z)x̂iL

∂τ i0

c∂t
(x, t + zr/c)

+
2(2� + 1)

(� + 1)(� + 2)(2� + 5)
δ�+2(z)x̂ijL

∂2τ ij

c2∂t2
(x, t + zr/c)

}
, (2.14a)

JL(t) = 1

c
FP
B=0

εab〈i�

∫
d3x

(
r

r0

)B ∫ 1

−1
dz

{
δ�(z)x̂L−1〉aτ b0(x, t + zr/c)

− 2� + 1

(� + 2)(2� + 3)
δ�+1(z)x̂L−1〉ac

∂τ bc

c∂t
(x, t + zr/c)

}
, (2.14b)

where we recall that x̂L means the STF product of � spatial vectors, x̂L ≡ STF
(
xi1 · · · xi�

)
. The

other source moments, WL,XL, YL, ZL, are given by equations (5.17)–(5.20) in [2]. We shall
give below their new expressions in terms of surface integrals. See also [2] for a discussion of
the conserved monopole and dipole moments (having � = 0, 1).

A basic feature of these expressions is that the integral formally extends over the whole
support of the PN expansion of the stress–energy pseudo-tensor, i.e. from r = 0 up to infinity.
As already emphasized, the formal series τµν is physically meaningful only within the near-
zone. Therefore the integrals (2.14) physically refer to a result obtained from near-zone
quantities only (in the formal limit where c → +∞). However, it was found convenient in [2]
to mathematically extend the integrals up to r → +∞. This was made possible by the use of
the prefactor (r/r0)

B , together with a process of analytic continuation in the complex B plane.
This shows up in equations (2.14) as the crucial finite part operation, when B → 0, which
technically allows one to uniquely define integrals which would otherwise be IR divergent,
i.e. divergent at their upper boundary, |x| → +∞. See [1, 2] for the proof and details.

Since equations (2.14) are valid only in the sense of PN expansions, the operational
meaning of the auxiliary integrals in (2.14), with respect to the variable z, is actually that of
an infinite PN series, given by∫ 1

−1
dzδ�(z)τ

µν(x, t + zr/c) =
+∞∑
k=0

αk,�

(
r

c

∂

∂t

)2k

τµν(x, t), (2.15a)

where

αk,� ≡ (2� + 1)!!

(2k)!!(2� + 2k + 1)!!
. (2.15b)
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The expression of the function δ�(z), given in appendix B of [3] as

δ�(z) ≡ (2� + 1)!!

2�+1�!
(1 − z2)� such that

∫ 1

−1
dz δ�(z) = 1, (2.16)

is useful when manipulating formal PN expansions such as (2.15), but will not be used
explicitly in the present investigation.

2.2. The multipole moments as surface integrals

In this section we derive an alternative form of the PN source moments (2.14) in terms of
two-dimensional surface integrals. Such a possibility of expressing the moments, for general
� and at any PN order, as some surface integrals is quite useful for practical purposes, as we
shall show below when considering the application to the BSS case. In keeping with the fact
just explained that the ‘volume integrals’ equations (2.14) physically involve only near-zone
quantities, the ‘surface integrals’ into which we shall transform equations (2.14) physically
refer to an operation which extracts some coefficients in the ‘far near-zone’ expansion of
the gravitational field, i.e. in the expansion in increasing powers of 1/r of the PN-expanded
near-zone metric. Technically, as our starting point (2.14) is made of integrals extended up
to r → +∞, our mathematical manipulations below will involve ‘surface terms’ on arbitrary
large spheres r = R. All our manipulations will be mathematically well defined because of
the properties of complex analytic continuation in B.

The basic idea is to go from the ‘source term’, τµν , to the corresponding ‘solution’, hµν , via
integrating by parts the Laplace operator present in τµν = c4

16πG
�hµν . From equation (2.15)

we have∫
d3x rBx̂L

∫ 1

−1
dz δ�(z)τ

µν = c4

16πG

+∞∑
k=0

αk,�

(
d

c dt

)2k ∫
d3x rB+2kx̂L �hµν, (2.17)

in which we insert � = � − (
∂

c∂t

)2
on the RHS, and operate the Laplacian by parts using

�(rB+2kx̂L) = (B + 2k)(B + 2� + 2k + 1)rB+2k−2x̂L. In the process we can ignore the all-
integrated surface terms because they are identically zero by complex analytic continuation,
from the case where the real part of B is chosen to be a large enough negative number.
(The complete justification of this is as follows. In the present formalism we are actually
dealing with the MPM metric given by the nonlinearity expansion (2.5), and we are working
with the calculation of some given finite post-Minkowskian approximation n. Then the PN
expansion of the post-Minkowskian metric coefficient h

µν
n , namely h

µν
n , will typically diverge

at infinity, but not more than a certain finite power of r, say N(n), depending on n and such
that limn→∞ N(n) = ∞. Using h

µν
n = O(rN(n)) it is then clear that the all-integrated terms

in question are zero when we choose initially �(B) + 2k + � + N(n) + 1 < 0, hence they are
zero by analytic continuation in B.) Using the expression of the coefficients (2.15b), we are
next led to the alternative expression∫

d3x rBx̂L

∫ 1

−1
dzδ�(z)τ

µν

= c4

16πG

+∞∑
k=0

B(B + 2� + 4k + 1)αk,�

(
d

c dt

)2k ∫
d3x rB+2k−2x̂Lhµν. (2.18)

A remarkable feature of this result, which is the basis of our new expressions, is the
presence of an explicit factor B in front of the integral. The factor means that the result
depends only on the occurrence of poles, ∝1/Bp, in the boundary of the integral at infinity:



164 L Blanchet et al

r → +∞ with t = const. At this stage it is useful to write down the expressions of the
moments IL and JL we obtain by substituting (2.18) back into (2.14). These are

IL = c2

16πG
FP
B=0

Br−B
0

+∞∑
k=0

{
(B + 2� + 4k + 1)αk,�

(
d

c dt

)2k ∫
d3x rB+2k−2x̂L(h00 + hii)

− 4(2� + 1)(B + 2� + 4k + 3)

(� + 1)(2� + 3)
αk,�+1

(
d

c dt

)2k+1 ∫
d3x rB+2k−2x̂iLh

i0

+
2(2� + 1)(B + 2� + 4k + 5)

(� + 1)(� + 2)(2� + 5)
αk,�+2

(
d

c dt

)2k+2 ∫
d3x rB+2k−2x̂ijLh

ij

}
,

(2.19a)

JL = c3

16πG
FP
B=0

Br−B
0 εab〈i�

+∞∑
k=0

{
(B + 2� + 4k + 1)αk,�

(
d

c dt

)2k ∫
d3x rB+2k−2x̂L−1〉ahb0

− (2� + 1)(B + 2� + 4k + 3)

(� + 2)(2� + 3)
αk,�+1

(
d

c dt

)2k+1 ∫
d3x rB+2k−2x̂L−1〉ach

bc

}
.

(2.19b)

Let us proceed further. Thanks to the factor B we can replace the integration domain
of equation (2.18) by some outer domain of the type r > R, where R denotes some large
arbitrary constant radius. The integral over the inner domain r < R is always zero in the
limit B → 0 because the integrand is constructed from τµν , and we are considering extended
regular PN sources, without singularities. Now, in the outer (but still near-zone) domain we
can replace the PN metric coefficients hµν by the expansion in increasing powers of 1/r of
the PN-expanded metric, which is identical to the multipolar expansion of the PN-expanded
metric. This is precisely the quantity which was already introduced in equation (2.13) and
denoted there by M(hµν). Hence we have∫

d3x rBx̂L

∫ 1

−1
dzδ�(z)τ

µν = c4

16πG

+∞∑
k=0

B(B + 2� + 4k + 1)αk,�

(
d

c dt

)2k

×
∫

r>R
d3x rB+2k−2x̂LM(hµν). (2.20)

We want now to make use of a more explicit form of the far near-zone expansion M(hµν),
whose general structure is known. It consists of terms proportional to arbitrary powers of 1/r ,
and multiplied by powers of the logarithm of r. More precisely,

M(hµν)(x, t) =
∑
a,b

(ln r)b

ra
ϕ

µν

a,b(n, t), (2.21)

where a can take any positive or negative integer values, and b can be any positive integer:
a ∈ Z, b ∈ N. The coefficients ϕ

µν

a,b depend on the unit direction n ≡ x/r and on the
coordinate time t (in the harmonic coordinate system). The structure (2.21) for the multipolar
expansion of the near-zone (PN-expanded) metric is a consequence, via the matching
equation (2.13), of the corresponding result concerning the structure of the near-zone expansion
of the MPM metric (2.5), which has been proved in [6] by using the properties of the MPM
algorithm for the iteration of the metric. (Again we stress the fact that the result has been
proved at some arbitrary but finite post-Minkowskian order n; see equation (5.4) in [6]. In the
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present paper we assume, following [2], that we are always entitled to sum up formally the
post-Minkowskian series, and to view a result like (2.21) as true in the sense of formal power
series.)

As a side remark (which is not essential for the following), note that in [6] the near-zone
expansion of the MPM metric was viewed as an expansion in ‘ascending’ powers of r/cT ,
namely, it was written in the form

M (hµν)(x, t) =
∑
p,q

rp(ln r)qf µν
p,q(n, t), (2.22)

where p ∈ Z and q ∈ N. Evidently, expansions (2.22) and (2.21) are equivalent. The only
difference is that (2.21) was ordered in ascending powers of 1/r , i.e. in ‘descending’ powers of
r. Actually, both expansions are formal Laurent-type expansions, valid in some intermediate
range of radii: a < r < cT . Their coefficients are related by a simple re-ordering of the
exponents of r,

f µν
p,q(n, t) = ϕ

µν
−p,q(n, t). (2.23)

In the following, we shall use the notation ϕ
µν

a,b(n, t), corresponding to equation (2.21), for the
coefficients of these equivalent expansions.

Inserting (2.21) into (2.20), we are therefore led to the computation of the integral∫
r>R

d3x rB+2k−2x̂LM(hµν) =
∑
a,b

∫ +∞

R
dr rB+2k+�−a(ln r)b

∫
d� n̂Lϕ

µν

a,b(n, t), (2.24)

where d� is the solid angle element associated with the unit direction n (and n̂L ≡ x̂L/r�).
The radial integral can be trivially integrated by analytic continuation in B, with result∫ +∞

R
dr rB+2k+�−a(ln r)b = −

(
d

dB

)b [
RB+2k+�−a+1

B + 2k + � − a + 1

]
. (2.25)

Remember that we are ultimately interested only in the analytic continuation of such integrals
down to B = 0. And as an integral such as (2.25) is multiplied by a coefficient which is
proportional to B, we must control the poles of equation (2.25) at B = 0. Those poles are in
general multiple because of the presence of powers of ln r in the expansion, and the consecutive
multiple differentiation with respect to B in equation (2.25). The poles at B = 0 clearly come
from a single value of a, namely a = 2k + � + 1. For that value, the ‘multiplicity’ of the pole
takes the value b + 1. Here a useful simplification comes from the fact that the factor in front
of the integrals in (2.20) is of the form ∼B(B + K). In other words, this factor contains only
the first and second powers of B. Therefore, only the simple and double poles 1/B and 1/B2

in (2.25) can contribute to the final result. Hence, we conclude that it is enough to consider
the values b = 0, 1 for the exponent b of ln r in expansion (2.21).

To express the result in the most convenient manner let us introduce special notation for
some relevant combination of far-near-zone coefficients, ϕ

µν

a,b(n, t), which, as we just said,
correspond exclusively to the values a = � + 2k + 1 and b = 0 or 1. Namely,

�
µν

k,�(n, t) ≡ αk,�[−(2� + 4k + 1)ϕ
µν

2k+�+1,0(n, t) + (1 − (2� + 4k + 1) ln r0)ϕ
µν

2k+�+1,1(n, t)],

(2.26)

in which we have absorbed the numerical coefficient αk,� defined by (2.15b). (Note that the
coefficients ϕ

µν

a,b depend a priori on the scale r0.) With this notation we then obtain

FP
B=0

Br−B
0 (B + 2� + 4k + 1)αk,�

∫
r>R

d3x rB+2k−2x̂LM(hµν) = 4π
〈
n̂L�

µν

k,�

〉
, (2.27)
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where the brackets refer to the spherical or angular average (at coordinate time t), i.e.

〈
n̂L�

µν

k,�

〉
(t) ≡

∫
d�

4π
n̂L�

µν

k,�(n, t). (2.28)

As we can see, any reference to the intermediate scale R has completely disappeared. The
quantities (2.28) are integrals over a unit sphere, and can rightly be referred to as ‘surface
integrals’. These surface integrals will be the basic blocks entering our new expressions for
the multipole moments. If we wish to physically think of them as integrals over some two-
surface surrounding the source, we can roughly consider that this two-surface is located at a
radius R, with a � R � cT . Anyway, the important point is that, as we have just remarked,
the surface integrals (2.28), and therefore the multipole moments, are strictly independent of
the choice of the intermediate scale R which entered our reasoning.

Finally, we are in a position to write down the following final results for the source
multipole moments (2.19a) and (2.19b), expressed solely in terms of the surface integrals of
the type (2.28),

IL = c2

4G

+∞∑
k=0

{(
d

c dt

)2k 〈
n̂L

(
�00

k,� + �ii
k,�

)〉 − 4(2� + 1)

(� + 1)(2� + 3)

(
d

c dt

)2k+1 〈
n̂iL�i0

k,�+1

〉

+
2(2� + 1)

(� + 1)(� + 2)(2� + 5)

(
d

c dt

)2k+2 〈
n̂ijL�

ij

k,�+2

〉}
, (2.29a)

JL = c3

4G
εab〈i�

+∞∑
k=0

{(
d

c dt

)2k 〈
n̂L−1〉a�b0

k,�

〉 − 2� + 1

(� + 2)(2� + 3)

(
d

c dt

)2k+1 〈
n̂L−1〉ac�

bc
k,�+1

〉}
.

(2.29b)

The other source moments, WL,XL, YL and ZL, which parametrize the gauge vector given
by equation (2.9), admit similar expressions, which can be derived by the same method. For
these we give only the results:

WL = c3

4G

+∞∑
k=0

{
2� + 1

(� + 1)(2� + 3)

(
d

c dt

)2k 〈
n̂iL�i0

k,�+1

〉

− 2� + 1

2(� + 1)(� + 2)(2� + 5)

(
d

c dt

)2k+1 〈
n̂ijL�

ij

k,�+2

〉}
, (2.30a)

XL = c4

4G

+∞∑
k=0

{
2� + 1

2(� + 1)(� + 2)(2� + 5)

(
d

c dt

)2k 〈
n̂ijL�

ij

k,�+2

〉}
, (2.30b)

YL = c4

4G

+∞∑
k=0

{
−

(
d

c dt

)2k 〈
n̂L�ii

k,�

〉
+

3(2� + 1)

(� + 1)(2� + 3)

(
d

c dt

)2k+1 〈
n̂iL�i0

k,�+1

〉

− 2(2� + 1)

(� + 1)(� + 2)(2� + 5)

(
d

c dt

)2k+2 〈
n̂ijL�

ij

k,�+2

〉}
, (2.30c)

ZL = c4

4G
εab〈i�

+∞∑
k=0

{
2� + 1

(� + 2)(2� + 3)

(
d

c dt

)2k 〈
n̂L−1〉ac�

bc
k,�+1

〉}
. (2.30d )
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3. Application to a boosted Schwarzschild solution

3.1. Source quadrupole moment of the BSS at 3PN order

As an application of our explicit surface-integral formulae (2.29), we wish to compute the
source-type multipole moments of a spherically symmetric extended body moving with
uniform velocity. Remember that our formalism assumes, in principle, that we are dealing with
regular, weakly self-gravitating bodies. We expect, because of the nice ‘effacing properties’
of Einstein’s theory [34], that our final physical results, especially when they are expressed as
surface integrals as in (2.29), can be applied to more general sources, such as neutron stars or
black holes. Indeed, we are going to confirm this expectation in the simplest possible case,
that of an isolated spherically symmetric body which is known, by Birkhoff’s theorem, to
generate a universal exterior gravitational field, given by the Schwarzschild solution. We shall
therefore apply our formulae to a boosted Schwarzschild solution (BSS). Actually, in order
to justify our use of the BSS in standard harmonic coordinates, we must dispose of a small
technicality.

This technicality concerns the non-uniqueness of harmonic coordinates for the
Schwarzschild solution, even under the assumption of stationarity (in the rest frame)
and spherical symmetry. Indeed, under these assumptions, and starting from the usual
Schwarzschild–Droste radial coordinate, say rS , the (rest frame) radial coordinate of the most
general harmonic coordinate system, say r = k(rS), must satisfy the differential equation (see,
e.g., Weinberg [35], p 181)

d

drS

[(
r2
S − 2GM

c2
rS

)
dk

drS

]
= 2k. (3.1)

The ‘standard’ solution of equation (3.1), which is considered in all textbooks such as [35],
reads simply

r = kstandard(rS) = rS − GM

c2
. (3.2)

In the black-hole case, the solution (3.2) is the only one which is regular on the horizon, i.e.
when rS = 2GM/c2 (as will be clear from equations (3.2) below). However, in the case of
the external metric of an extended spherically symmetric body, the regularity on the horizon
is not a relevant issue. What is relevant is that the solution of the external problem (3.1) be
smoothly matched to a regular solution of the corresponding internal problem. As usual,
this matching determines a unique solution everywhere. In general, this unique, everywhere
regular, solution will correspond, in the exterior of the body, to a particular case of the general,
two-parameter solution of the second-order differential equation (3.1). The latter is of the
form

r = kgeneral(rS) = c1

(
rS − GM

c2

)
+ c2k2(rS), (3.3)

where k2(rS) denotes the (uniquely defined) ‘radially decaying solution’ of equation (3.1), and
where c1 and c2 are two integration constants. Indeed, when considering the flat-space limit of
equation (3.1), it is easily seen that there are two independent solutions which behave, when
rS → +∞, as rS and r−2

S respectively. An explicit expression for the decaying solution is9

9 Here

F(α, β, γ, z) = 1 +
αβ

γ

z

1!
+

α(α + 1)β(β + 1)

γ (γ + 1)

z2

2!
+ · · · ,

denotes Gauss’s hypergeometric function.
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k2(rS) = 1

r2
S

F

(
2, 2, 4,

2GM

c2rS

)
, (3.4a)

F(2, 2, 4, z) = − 6

z2

[
2 +

1

z
(2 − z) ln(1 − z)

]
. (3.4b)

We can always normalize c1 to the value c1 = 1. Then, with the above definitions, c2 has
the dimension of a length cubed. By considering in more detail the matching of the general
solution of the harmonically relaxed Einstein equations at the 2PN level (see, e.g., the book
by Fock [36], p 322), one easily finds that the second integration constant is of the order of
c2 ∼ (GM/c2)2a, where a denotes the radius of the extended body under consideration. It is
also easily checked that the constant c2 parametrizes, at the linearized order, a gauge vector
ϕi

1 of the form ϕi
1 ∝ c2∂i(1/r), and can thus be referred to as a ‘gauge parameter’. Comparing

to the general multipole decomposition (2.9), we see that this gauge parameter c2 corresponds
to the monopole (� = 0) in the gauge multipole sequence XL.

In contrast to the multipole moments of stationary sources, which are geometric invariants
(and can be expressed as surface integrals on a sphere at spatial infinity), the ‘source multipole
moments’ defined in [2] (and re-expressed above as surface integrals over spheres in some
intermediate region, a � r � cT ) are probably not geometric invariants. They are useful
intermediate constructs, which allow one to compute physically invariant information, but
their definition is linked to the choice of harmonic coordinates covering the source. This
means that the various ‘gauge multipoles’ WL,XL, YL, ZL will influence, at some nonlinear
order of the MPM iteration, the values of the two sequences of ‘physical multipoles’: IL, JL.
Therefore, one should expect that, at some nonlinear order, the physical multipoles IL, JL of
a boosted general, harmonic-coordinate spherically symmetric metric will start to depend on
the value of the gauge parameter c2.

Here, we are only interested in computing the quadrupole moment Iij of a boosted
general spherically symmetric metric. We shall see below that the index structure of Iij will
be provided by the STF tensor product of the boost velocity V i with itself, denoted by V 〈iV j〉

(assuming that the origin of the coordinates is at the initial position of the centre of symmetry
of the BSS). Therefore, any contribution to Iij coming from the gauge parameter c2 must
contain, at least, the factors c2 and V 〈iV j〉, and also the total mass M. Taking into account
the dimensionality of c2 ∼ (GM/c2)2a, which is that of a length cubed, it is easily seen that
there is no way to generate such a contribution to Iij . Therefore, we conclude that the source
quadrupole moment of a boosted general, harmonic-coordinate spherically symmetric metric
is strictly equal to the source quadrupole moment of a boosted standard harmonic-coordinate
Schwarzschild solution, obtained by setting c2 = 0 (and c1 = 1) in (3.3), i.e. by choosing the
standard harmonic radial coordinate (3.2).

In the following, we shall therefore consider only such a boosted Schwarzschild solution
in standard form. We shall sometimes refer to the source of this solution as a black hole
(though, strictly speaking, one should always have in mind some extended spherical star). For
simplicity, we shall translate the origin of the coordinate system so that it is located at the
initial position of the black hole at coordinate time t = 0. With this choice of origin of the
coordinates all the current-type moments JL of the BSS are zero. We shall concentrate our
attention on the mass-type quadrupole moment, Iij , that we shall compute at the 3PN order.

Let us denote by xµ = (ct, x) the global reference frame, in which the black hole is
moving, and by Xµ = (cT , X) the rest frame of the black hole—both xµ and Xµ are assumed
to be harmonic coordinates. Let xi(t) be the rectilinear and uniform trajectory of the (centre of
symmetry of the) BSS in the global coordinates xµ, and V = (V i) be the constant coordinate
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velocity of the BSS,

V i ≡ dxi(t)

dt
. (3.5)

The rest frame Xµ is transformed from the global one xµ by the Lorentz boost (for simplicity
we consider a pure Lorentz boost without rotation of the spatial coordinates)

xµ = �µ
ν (V)Xν, (3.6)

whose components are explicitly given by

�0
0(V) = γ, (3.7a)

�i
0(V) = �0

i (V) = γ
V i

c
, (3.7b)

�i
j (V) = δi

j +
γ 2

γ + 1

V iVj

c2
, (3.7c)

with

γ ≡
(

1 − V 2

c2

)−1/2

. (3.7d )

As explained above, we can assume that the metric of the BSS in the rest frame Xµ takes
the standard harmonic-coordinate Schwarzschild expression, which we write in terms of the
Gothic metric deviation Hµν , satisfying ∂νH

µν = 0. (We use the same conventions as in
equation (2.1), with upper case letters referring to quantities associated with the BSS rest
frame.) Hence,

H 00 = 1 −
(
1 + GM

c2R

)3

1 − GM
c2R

, (3.8a)

Hi0 = 0, (3.8b)

Hij = −G2M2

c4R2
NiNj , (3.8c)

where M is the total mass, R ≡ |X| and Ni ≡ Xi/R. A well-known feature of the
Schwarzschild metric in harmonic coordinates is that the spatial Gothic metric Hij is made of
a single quadratic-order term ∝ G2 as shown in equation (3.8c). The Gothic metric deviation
transforms like a Lorentz tensor so the metric of the BSS in the global frame xµ reads as

hµν(x) = �µ
ρ�

ν
σHρσ (�−1x), (3.9)

in which the rest-frame coordinates have been expressed by means of the global ones, i.e.
Xµ(x) = (�−1)µνx

ν , where the inverse Lorentz transformation is given by (�−1)µν(V) ≡
� µ

ν (V) = �µ
ν(−V). In our explicit calculations (done with the software Mathematica) we

employ the BSS metric in exactly the form given by equation (3.9). The only problem is to
derive the explicit relations giving the rest-frame radial coordinate R and the unit direction Ni

as functions of their global-frame counterparts r and ni , of the global coordinate time t, and
of the boost velocity V i . For these relations we find

R = r

[
1 + c2(γ 2 − 1)

(
t

r

)2

− 2γ 2(V n)

(
t

r

)
+ γ 2 (V n)2

c2

]1/2

, (3.10a)

Ni =
ni − γV i

(
t
r

)
+ γ 2

γ +1
V i

c2 (V n)[
1 + c2(γ 2 − 1)

(
t
r

)2 − 2γ 2(V n)
(

t
r

)
+ γ 2 (V n)2

c2

]1/2 , (3.10b)
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where (V n) ≡ V · n = V jnj is the usual Euclidean scalar product. The latter formulation of
the BSS metric, equations (3.8)–(3.10), is well adapted to our calculations because we have to
perform, when computing the source multipole moments, an integration over the coordinate
three-dimensional spatial slice x ∈ R

3, with coordinate time t = const, and this is easily done
using the explicit relations (3.10).

However, let us note that the BSS metric (in standard harmonic coordinates) is best
formulated in a manifestly Lorentz covariant way as follows:

hµν =

1 −

(
1 + GM

c2r⊥

)3

1 − GM
c2r⊥


 uµuν − G2M2

c4r2
⊥

nµnν, (3.11)

where uµ is the timelike unit four-velocity of the centre of symmetry of the BSS, where
nµ is the spacelike unit vector pointing from the BSS to the field point along the direction
orthogonal (in a Minkowskian sense) to the world line of the BSS, and where r⊥ denotes
the orthogonal distance to the world line (square root of the interval). Expression (3.11) is
completely equivalent to (and more elegant than) the more ‘coordinate-rooted’ formulation
(3.8)–(3.10). We shall employ it in a future investigation [37].

We compute the quadrupole moment Iij of the BSS, following the prescriptions defined
by equation (2.29a). To this end we first expand hµν when c → +∞, taking into account all
the c present both in the expression of the rest frame metric (3.8) as well as those coming
from the Lorentz transformation (3.9) and (3.10). In this process the boost velocity V is to
be considered as a constant, ‘spectator’, vector. Note in passing that, in the present problem,
the characteristic size a of the source at time t is given by the displacement from the origin,
a ∼ Vt , where V ≡ |V|, while the near-zone corresponds to r � ct . Therefore, the far near-
zone, where we read off the multipole moments as some combination of expansion coefficients
ϕ

µν

a,b(n, t), is the domain V t � r � ct . We have evidently to assume that V � c for this
region to exist.

We then first get the near-zone (or PN) expansion of the BSS metric, hµν , by expanding
in inverse powers of c up to 3PN order. Next we compute the multipolar (or far) re-expansion
of each of the PN coefficients when r → +∞ with t = const. In this way we obtain what we
have denoted by M(hµν) in equation (2.21). In the BBS case it is evident that the far-zone
expansion (2.21) involves simply some powers of 1/r , without any logarithm of r (indeed,
see, e.g., equation (3.10)).

With M(hµν) in hand we have the coefficients of the various powers of 1/r , and we
obtain thereby the various quantities �

µν

k,� defined by equation (2.26). It is then a simple matter
to compute all the required angular averages present in our formula (2.29a) and to obtain the
following 3PN mass quadrupole moment of the BSS (the angular brackets surrounding indices
referring to the STF projection),

IBSS
ij = mt2V 〈iV j〉

[
1 +

9

14

V 2

c2
+

83

168

V 4

c4
+

507

1232

V 6

c6

]
+

4

7

G2M3

c6
V 〈iV j〉 + O

(
1

c8

)
. (3.12)

The first term represents the standard Newtonian expression, multiplied here by a bunch of
relativistic corrections. (Recall that we have chosen the origin of the coordinate system at the
initial location of the BSS at t = 0.)

The last term in equation (3.12), with coefficient C = 4/7, is the most interesting for our
purpose. It is purely of 3PN order, and it contains the first occurrence of the gravitational
constant G, which therefore arises in the quadrupole of the BSS only at 3PN order. This
term is interesting because it corresponds to one of the regularization ‘ambiguities’, due to
an incompleteness of Hadamard’s self-field regularization, which recently appeared in the
calculation of the mass-type quadrupole moment of inspiralling point particle binaries at the
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3PN order [11, 12]. The associated ambiguity parameter was called ζ , and was introduced as a
factor of 3PN terms in the quadrupole moment having the form ∼m3

1v
〈i
1 v

j〉
1 or m3

2v
〈i
2 v

j〉
2 , where

m1 and m2 are the two point masses, and vi
1, v

i
2 are their coordinate velocities10. The parameter

ζ represents the analogue of the ‘kinetic ambiguity’ parameter ωk in the 3PN Hamiltonian of
compact binaries [21, 22]. It is now clear that ζ can be determined from what we shall now
call the BSS limit of a binary system, which consists of setting one of the masses of the binary
to be exactly zero, say m2 = 0.

We have computed the BSS limit of the 3PN mass-type quadrupole moment of compact
binaries computed for general binary’s orbits in [11, 12]. We have also inserted for the position
of the first body yi

1 = vi
1 t in order to conform to our choice for the origin of the coordinates.

In this way we obtain

IBSSlimit
ij = m1t

2v
〈i
1 v

j〉
1

[
1 +

9

14

v2
1

c2
+

83

168

v4
1

c4
+

507

1232

v6
1

c6

]

+

(
232

63
+

44

3
ζ

)
G2m3

1

c6
v

〈i
1 v

j〉
1 + O

(
1

c8

)
. (3.13)

The comparison of equations (3.13) and (3.12) reveals a complete match between the two
results if and only if we have the expected agreement between the masses, i.e. M = m1, and
the velocities, vi

1 = V i (since the velocity of the body remaining after taking the BSS limit
should exactly take the boost velocity), and the ambiguity constant ζ takes the unique value

ζ = − 7

33
. (3.14)

Our conclusion, therefore, is that the ambiguity parameter ζ is uniquely determined by the
BSS limit. Because of the close relation between the BSS limit with Lorentz boosts, it is clear
that ζ is linked to the Lorentz–Poincaré invariance of the multipole moment formalism of [2]
as applied to compact binary systems in [11, 12]. This link strongly suggests that the specific
value (3.14) represents the only one for which the expression of the 3PN quadrupole moment
is compatible with the Poincaré symmetry. In other words the present calculation indicates
that the Poincaré invariance should correctly be incorporated into the laws of transformation
of the source-type multipole moments for general extended PN sources as given by
equations (2.14) or (2.29), though we have not verified this directly.

Note that the situation regarding ζ is the same as for the kinetic ambiguity parameter ωk

in the 3PN equations of motion, whose value has also been uniquely fixed by imposing the
Lorentz–Poincaré invariance of the formalism [23–25]. (The other ambiguities ξ and κ in the
binary’s 3PN mass quadrupole moment [11, 12] parametrize some Galilean invariant terms
which cannot be derived from a Lorentz transformation. This can also be seen from the fact
that ξ and κ are in factor of some ‘interacting’ terms, depending on both masses m1 and m2,
and are thus out of the scope of the BSS limit.)

Let us finally emphasize that we have obtained equation (3.14) here without using any
regularization scheme for curing the divergencies associated with the self-field of point
particles. However, it has been shown in recent related works [20, 37] that this value is
precisely the one derived in the problem of point particles binaries at 3PN order by means of
the dimensional self-field regularization, instead of Hadamard’s regularization. (This shows
that dimensional regularization is able to correctly keep track of the global Poincaré invariance
of the general relativistic description of isolated systems.)

10 See section X of [11] for the discussion on why and how to introduce the ambiguity parameters in the 3PN
quadrupole of point particle binaries.
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3.2. Retarded far-zone field of the BSS at 3PN order

In this section we present, as a further confirmation of our result, an alternative derivation of
the crucial coefficient C = 4/7 in equation (3.12), and hence of the kinetic-type ambiguity
parameter ζ = −7/33. This new derivation will be based on the expansion of the BSS metric
(3.8) and (3.9) at Minkowskian future null infinity, r → +∞ with u ≡ t − r/c = const. It
relies on the complete identification of the metric (3.8) and (3.9), considered in the limit where
r → +∞ with u = const, with the multipolar-post-Minkowskian (MPM) external metric
of an isolated system, as given by the quantity M(hµν) reviewed in section 2.1 above. This
identification is justified by the fact that the general harmonic-coordinate MPM exterior metric
defined by equation (2.5) smoothly matches, via the matching equation (2.13), the inner PN
solution of the inhomogeneous field equations inside the matter source (see [2]). Indeed, so
does the BSS metric (3.8) and (3.9), as we have seen during the discussion on the general
solution of the harmonic-coordinates condition (3.1) for the Schwarzschild metric, and our
proof that the parameter c2 does not contribute to the quadrupole moment.

In this section we thus have to consider the BSS metric as a functional of the six sets
of multipole moments {IL, JL,WL,XL, YL, ZL} parametrizing the linearized approximation
to the MPM metric, namely h

µν

1 defined by equations (2.7)–(2.9), and then take into account
the subsequent nonlinear iterations, h

µν

2 , h
µν

3 , . . . , whose computation is defined by the MPM
algorithm of [6], as reviewed in equations (2.11) and (2.12) above. Actually we shall work
mostly with the so-called ‘canonical’ MPM metric, h

µν
can, a functional of two and only two

types of multipole moments called ‘canonical’, mass-type moment ML and current-type SL,
instead of the six source moments IL, JL, . . . , ZL. Working with the metric h

µν
can simplifies

drastically the computation of the nonlinear interactions. We shall justify below why, for our
purpose, we can indeed use just this special case of a particular harmonic-gauge-fixed external
metric, rather than the more general harmonic-coordinate external metric. Those metrics are
geometrically equivalent, but we shall have to check (as in the case of the c2 parameter in
section 3.1) that gauge effects do not modify the result we are interested in.

In the present section we shall have to compute the quadratic and cubic metric corrections,
h

µν

can2 and h
µν

can3 in the notation of equation (2.5), for some specific multipole interactions. The
canonical MPM metric is defined by

hµν
can[ML, SL] =

+∞∑
n=1

Gnhµν
can n, (3.15)

where the linearized approximation is given by the same formulae as equations (2.8) but with
the canonical moments ML and SL in place of the source moments IL and JL, and with all the
gauge multipoles {WL,XL, YL, ZL} set to zero. In other words,

h00
can 1[ML, SL] = − 4

c2

+∞∑
�=0

(−)�

�!
∂L

[
1

r
ML

]
, (3.16a)

h0i
can 1[ML, SL] = 4

c3

+∞∑
�=1

(−)�

�!

{
∂L−1

[
1

r
ṀiL−1

]
+

�

� + 1
εiab∂aL−1

[
1

r
SbL−1

]}
, (3.16b)

h
ij

can 1[ML, SL] = − 4

c4

+∞∑
�=2

(−)�

�!

{
∂L−2

[
1

r
M̈ijL−2

]
+

2�

� + 1
∂aL−2

[
1

r
εab(i Ṡj)bL−2

]}
. (3.16c)

Then the nonlinear metrics h
µν
can n[ML, SL], for n � 2, are obtained from (3.16) by means of

the same algorithm as before, explained in equations (2.11) and (2.12), in the case where the
gauge vector ϕ

µ

1 = 0, together with the replacement {IL, JL} → {ML, SL}.
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We have already alluded to the important point, proved in [6], that although the canonical
metric (3.15) and (3.16) is simpler than our previous construction (2.5)–(2.9), it is physically
or geometrically equivalent to it, i.e. it describes the same physical matter system, provided
that ML and SL are related to IL, JL, . . . , ZL by some specific relations of the type

ML = IL + FL[I, J,W,X, Y,Z], (3.17a)

SL = JL + GL[I, J,W,X, Y,Z], (3.17b)

where FL and GL denote two nonlinear functionals (at least quadratic in the moments) of
the original set of source moments IL, JL, . . . , ZL. However, if the use of only two sets of
moments, ML and SL, is very useful when computing the nonlinear multipole interactions, it
remains that these moments have still to be related to the more ‘fundamental’ source moments
by equations (3.17). Indeed we know the analytic closed-form expressions of the source
moments IL, JL, . . . , ZL (see section 2.1) but similar formulae for ML, SL, valid to all PN
orders, are not known to exist. Equations (3.17) need to be investigated anew for each specific
cases. Fortunately, ML and SL are ‘almost’ equal to their counterparts IL and JL. Indeed we
know that in the case of the mass-type moments for instance, equation (3.17a) when further
PN expanded reads as

ML = IL +
1

c5
δIL + O

(
1

c7

)
, (3.18)

where δIL denotes some correction term arising at order 2.5PN only (if necessary this term
is given by equation (4.24) in [38]). The remainder in equation (3.18) is of order 3.5PN.
Equation (3.18) shows that the 3PN term in the quadrupole moment of the BSS we are
looking for—last term in equation (3.12)—will be the same for Iij as for Mij . In addition
to the relations (3.17) and (3.18) we must also take into account the possible effect of the
coordinate transformation between the canonical metric (3.15) and the metric (2.5), since as
we mentioned, it is the latter which must be identified with the retarded far-zone expansion of
the BSS metric (3.9).

Let us consider the general structure of the mass-type moments ML (or IL) in the case of
the BSS. In the present problem there is only one vector which can be used to build the moment:
namely the boost velocity V i , so the index structure of ML must necessarily be made of the
STF product V〈L〉 ≡ V〈i1 · · · Vi�〉. (Indeed we recall that we choose the origin of the coordinate
system to lie on the trajectory of the BSS, so we do not have at our disposal the vectorial
separation between the origin and the BSS world line. It is clear that such a restriction is not
physically crucial, however it simplifies the presentation and several arguments in this section
very much.) In addition, we readily see on dimensional grounds that V〈L〉 must be multiplied
by either u�, where u ≡ t − r/c, or by the product (GM/c3)u�−1, or by (GM/c3)2u�−2, and
so on, and that each of the latter terms can be multiplied by some relativistic corrections of the
type (V 2/c2)n up to any PN order. Here M denotes the BSS constant mass monopole, � = 0,
or ADM mass. The general structure of the mass-type moment ML (and also of IL as well) at
the 3PN order therefore reads

ML(u) = MV〈L〉

[
u�

(
1 &

V 2

c2
&

V 4

c4
&

V 6

c6

)
& u�−1 GM

c3

(
1 &

V 2

c2

)

& u�−2

(
GM

c3

)2

+ O
(

1

c7

)]
, (3.19)

where the notation & means that we have to add a term having the structure that is indicated
next. In the quadrupole case, � = 2, we recognize in the last (explicit) term of equation (3.19)
the interesting form of the contribution to the ambiguity ζ in the BSS limit.
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The mass multipole moment of the BSS varies with time typically like some u�. This fact
seems to be incompatible with the construction of MPM metrics in [6], since it was assumed
there, in order to implement this construction, that the matter source is stationary before some
fixed finite instant −T in the remote past (and also that the coordinates are mass-centred in
the sense that the dipole moment Mi is always zero). These assumptions, made in [6] for
purely technical reasons, imply in principle that all the multipole moments ML are constant
before the date −T (i.e. for u < −T ), and thus cannot a priori be applied to the physical
situation of the BSS. Nevertheless, we shall admit in the present paper that we are allowed
to use the construction and the results of [6] even in the case of the BSS. Indeed there has
been several indications in our previous works using the MPM formalism, notably when the
formalism was used for the computation of gravitational wave tails and ‘tails-of-tails’ [7, 8],
that the MPM expansion can in fact be applied to more general sources which have always
been non-stationary, for instance an inspiralling compact binary formed by capture of two
particles initially moving on some hyperbolic-like orbits. On the other hand, as we shall
see our application of the MPM formalism to the external field of the BSS will yield some
consistent result, which is independent of any initial instant −T and is in agreement with the
result of section 3.1. This justifies a posteriori (to some extent) our expectation that the MPM
formalism is still valid in the case of the BSS. Furthermore, we shall give in the appendix an
explicit proof that the integration formulae of the MPM formalism admit a well-defined limit
when the multipole moments are continuously deformed into those of the BSS.

We are interested in the quadrupolar contribution in the full nonlinearity expansion (3.15),
as seen from retarded infinity, r → +∞ with u = const (this limit will be referred below to as
I+). We base our investigation on the time–time component (00) of the metric, because this is
that component which is necessary and sufficient in order to obtain the multipole moment itself,
as opposed to some time derivative of it as would be deduced from the 0i and ij components
(this is very important because we are looking for a term in Mij which is a constant). At the
linearized approximation, the ‘far-field’ quadrupole moment as seen from I+ simply reduces
to the canonical moment Mij , and from equation (3.16a) we get (with n̂ij ≡ ninj − 1

3δij )

Gh00
can 1 = · · · − 6G

c2r3
n̂ijMij (u) + · · · . (3.20)

Here we focus on the term of the form n̂ij r−3f (u), and the ellipsis refer to all the other terms,
either involving some other multipolarities n̂L with � �= 2, or a power of 1/r different from
3. Consider now the corrections brought about by the nonlinear terms to be added to the
linearized expression (3.20), and write

h00
can ≡

+∞∑
n=1

Gnh00
can n

= · · · − 6G

c2r3
n̂ijM rad

ij (u) + · · · , (3.21)

where the far-field or ‘radiative’ quadrupole moment (i.e., as seen from I+) is denoted by
M rad

ij . The nonlinear terms in (3.21) introduce many couplings between the different multipole
moments, and there are a lot of possibilities in the general case. However, things are much
simpler in the case of the BSS owing to the particular structure of the moments as determined
in equation (3.19). Notably, the �-th time derivative of the BSS moment ML is always a
constant. Then we find that at 3PN order the most general form of the allowed nonlinear terms
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in M rad
ij reads as

M rad
ij = Mij + γ

GM

c3
Ṁij + ε

G

c3
M〈iṀj〉 + σ

G

c5
Ṁk〈iM̈j〉k + φ

G

c5
Mk

˙M̈ijk + θ
G

c5
ṀkM̈ijk

+ ρ
G2M2

c6
M̈ij + η

G2M

c6
Ṁ 〈iṀj〉 + O

(
1

c7

)
, (3.22)

where γ, ε, σ, φ, θ, ρ, η represent some unknown (for the moment at least) coefficients, which
are in general constant but as we shall see which can also depend on the logarithm of the
distance r. Note that equation (3.22) might a priori contain also some non-local contributions,
say

∫ u

−∞ dv MM̈ij (v), or (worse)
∫ u

−∞ dv M2 ˙M̈ij (v), but we shall discuss such terms in the
appendix and show that they do not appear. The most important terms for the present purpose
are the two last ones, with coefficients ρ and η, which involve the cubic-order multipole
interactions M2 × Mij and M × Mi × Mj (where M is the mass and Mi the mass dipole of
the BSS).

The coefficient we are looking for in the 3PN BSS source-type quadrupole moment Iij

was denoted by C, and we now write the corresponding term as

δCIij = C
G2M3

c6
V 〈iV j〉. (3.23)

The other terms in the BSS quadrupole have a different structure which has already been
displayed in equation (3.12). The result C = 4/7 of section 3.1 will be recovered by the
following method. As we noted after equation (3.18), the coefficient C is necessarily the same
for the source-type and canonical-type moments, hence

δCMij = C
G2M3

c6
V 〈iV j〉. (3.24)

Consider next the radiative-type moment (3.22), and look for the modification of C induced
by nonlinearities. In order to do this we have to remember the fact (see [38]) that both the
canonical and source moments ML and IL for general matter systems admit a PN expansion
which is ‘even’ up to 2PN order, with the first ‘odd’ correction being at the 2.5PN level.
This simple fact immediately shows that it is impossible that the ‘odd’ terms shown in
equation (3.22), which carry explicitly in front the odd powers 1/c3 and 1/c5, contribute to a
term at the 3PN order. So we conclude that the sought-for modification of C can come only
from the two last terms, with coefficients ρ and η. Taking into account the Newtonian results
M̈ij = 2MV 〈iV j〉 + O(c−2) and M̈i = MV i + O(c−2) we find

δCM
rad
ij = (C + 2ρ + η)

G2M3

c6
V 〈iV j〉. (3.25)

(Here our notation δCM
rad
ij means that we are considering the complete term having the above

indicated structure.)
Next we come to the central part of this investigation, namely the computation of the two

coefficients ρ and η. This task is not so easy because ρ and η are in factor of some cubically
nonlinear terms. We have obtained them by straightforward application of the MPM algorithm
of [6, 33]. Actually the value of ρ, corresponding to the interaction M2 × Mij , is already
contained in the result of the calculation of the gravitational wave ‘tails-of-tails’ in [7]. For
convenience we relegate the details of this nonlinear iteration to the appendix, and simply
quote here our end results:

ρ = 1271

735
− 58

21
ln

(
r

r0

)
, (3.26a)
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η = 2918

735
+

116

21
ln

(
r

r0

)
. (3.26b)

For completeness we give also the known values of three other constants in (3.22):

γ = 7
2 , ε = 7

3 , σ = 20
21 . (3.27)

These values come from equation (2.8a) in [7] for γ , equation (A.9a) in the appendix below
for ε, and table 2 in [33] for σ . (We have not computed the coefficients φ and θ .)

As we see from (3.26), both ρ and η depend on the logarithm of r/r0, where r0 is the same
constant as in the source multipole moments (2.14), but we nicely find that the logarithms
cancel out in the relevant combination of these coefficients which enters equation (3.25). In
fact, we can argue that the cancellation of the logarithms must necessarily occur because
nowhere in the far-zone expansion of the BSS metric (3.8) and (3.9) can such logarithms of
r/r0 be generated. Hence we get

δCM
rad
ij =

(
C +

52

7

)
G2M3

c6
V 〈iV j〉. (3.28)

Let us now check that there are no gauge effects, linked to the non-geometrical nature
of our definitions for the multipole moments, concerning the particular term we consider in
(3.28), in the sense that the coordinate transformation between the canonical metric coefficient
h00

can and the corresponding BSS one, computed from the expansion of equations (3.8)–(3.9)
and given by M(h00) in the MPM formalism, has no effect on this particular term. The
proof goes by noting first that the coordinate transformation at the linearized level is given
by the gauge vector (2.9) parametrized by the four source-type moments WL,XL, YL and
ZL. The latter moments were given in equations (5.17)–(5.20) of [2], and we have provided
in equations (2.30) above their new forms in terms of surface integrals. An important point
is that the moments WL,XL, YL, ZL have been defined in such a way that they admit some
nonzero finite limits when c → +∞; in other words, they ‘start at Newtonian order’ and their
Newtonian limit is nonzero. By using this fact together with dimensional analysis, it is a
simple matter to write down their structures in the case of the BSS, in a manner similar to
what we did for the moment ML in equation (3.19). We find

WL = V 2u {same structure as the one of ML given by (3.19)}, (3.29a)

XL = V 4u2 {same structure}, (3.29b)

YL = V 2 {same structure}, (3.29c)

while ZL is a current-type moment so ZL = 0 with our choice of origin for the BSS. The
structures (3.29) imply that the potentially dangerous term, which is proportional to M3, must
necessarily appear in these moments at order 1/c6 relatively to the Newtonian order. Next
one readily shows, again on dimensional grounds, that the only possible modifications of the
quadrupole moment Mij in (3.20) which are due to the gauge transformation, take the forms
Ẇij /c

2, Ẍij /c
4 or Yij /c

2. It is therefore impossible, because of the latter extra factors 1/c2 or
1/c4, that a dangerous term be generated in this way at the 3PN order. Similar arguments are
even more easily applied at nonlinear order in the coordinate transformation: for instance we
find that it is impossible that a nonlinear coupling of the type ML × WP , or WL × XP , has the
correct structure at 3PN order in the quadrupole moment.

This check being done, we conclude that the coefficient we predicted for the relevant term
in equation (3.28) represents exactly the quadrupolar contribution in the retarded far-zone
expansion (at I+) of the BSS metric (and by the reasoning of section 3.1 we know that we
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can use the BSS metric in standard harmonic coordinates). Now the point is that we can also
compute directly this contribution in the far-zone expansion of the BSS metric by using the
formulae (3.8) and (3.9). Since the far-zone expansion is to be done at retarded time (and not
at time t = const as we did in section 3.1), we must for this calculation substitute t by u + r/c

in equations (3.10) and only afterwards take the limit r → +∞ (holding u = const). In this
way we obtain the quadrupolar piece ∝ n̂ij /r3 in the 00 component of the metric, and as we
have proved before we are allowed to identify the term therein having the correct structure
with the one computed in (3.28). A simple Mathematica calculation reveals that the term in
question has the coefficient: 8. Therefore C + 52

7 = 8 and we obtain

C = 4
7 , (3.30)

in complete agreement with our previous finding (3.12), and in support of the value for the
kinetic ambiguity parameter: ζ = −7/33.
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Appendix. Nonlinear multipole interactions

This appendix is devoted to the computation of the cubically nonlinear coefficients ρ and η

entering equation (3.22). Following the MPM algorithm of [6] we must first compute the
nonlinear cubic source term, say �

µν

can 3, which is composed of the sum of a quadratic-order
piece made out of products between hcan 1 and hcan 2 (and of course their gradients), and of a
purely cubic-order piece, involving three factors hcan 1. The linearized metric has been given
in (3.16), and from it all subsequent iterations are generated by the MPM algorithm, which
is the same as in equations (2.11) and (2.12) except that, for the ‘canonical’ construction, the
gauge vector is ϕ

µ

1 = 0 and we use ML and SL as moments instead of IL, JL. The cubic
source term �

µν

can 3 [hcan 1, hcan 2] is inverted by means of the retarded d’Alembertian operator,
regularized by the specific finite part FPB=0 of equation (2.12),

u
µν

can 3 = FP
B=0

� −1
R

[(
r

r0

)B

�
µν

can 3

]
. (A.1)

The metric at cubic order reads then

h
µν

can 3 = u
µν

can 3 + v
µν

can 3, (A.2)

where v
µν

can 3 represents a particular homogeneous solution of the wave equation, such that
the harmonicity condition ∂νh

µν

can 3 = 0 is satisfied. Below we shall not need to compute
v

µν

can 3, since we shall simply have to invoke the fact that its 00 component, v00
can 3, is made of

multipolarities � = 0 or 1 only (see e.g. equation (2.12a) in [33]), and will thus always be zero
for the quadrupole case � = 2 of concern to us here.

Consider first the cubic interaction M × M × Mij . In this case �
µν

can 3 is already known
from previous work, equation (4.16a) of [7], which gives, for the needed 00 component11,

�00
can 3 = n̂abM

2[−516r−7Mab(u) − 516r−6Ṁab(u) − 304r−5M̈ab(u)]. (A.3)

11 In this appendix we pose G = c = 1.
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To integrate we use the formulae given in appendix A of [33]. We limit ourselves to the
computation of the part u

µν

can 3 of the algorithm since v00
can 3 = 0 for the particular multipole

interaction we consider. Throughout this calculation we use the fact that the second time
derivative of the BSS quadrupole moment is constant, hence ˙M̈ij = 0. First of all, by
straightforward use of the integration formula (A.16a) of [33] we obtain

h00
can 3 = n̂abM

2

[
−516

14
r−5Mab(u) − 516

14
r−4Ṁab(u) − 3354

245
r−3M̈ab(u)

]

− 580

7
FP
B=0

� −1
R

[(
r

r0

)B

r−5n̂abM
2M̈ab(u)

]
. (A.4)

The last term is a priori more delicate in the case of the BSS because we know from
equation (A.13) of [33] that it could generate an integral depending on the whole time evolution
of the system, such as a ‘tail’ integral of the type J (u) ≡ ∫ u

−∞ dv M2 ˙M̈ij (v). The value of an
integral like J would be quite ambiguous within our MPM-based approach. Indeed, on the
one hand, the boosted system that we finally consider has Mij (u) proportional to u2, so that
˙M̈ij (u) vanishes identically. We would therefore expect, from this point of view, that J , being
the integral of a vanishing integrand, is zero: J = 0. On the other hand, we can perform the
v-integral in J to get J = M2[M̈ij (u) − M̈ij (−∞)]. Now, as we recalled above, the MPM
framework on which we base our discussion assumes that we start initially by considering
systems such that the multipole moments become time independent in the remote past (before
some finite instant −T ). For such systems, the second contribution in the latter expression for
J vanishes, and we would get J = M2M̈ij (u), which does not vanish in the case of a boosted
source.

However, this ambiguous situation does not appear in the present calculation. Indeed, the
logic of our calculation is the following. To derive the MPM result (A.4) we had to initially
assume that Mij (u) tends fast enough towards a constant in the infinite past. Then, after having
done the MPM iteration we get the form (A.4). Now, starting from the explicit expression (A.4)
we want to relax the original assumption about Mij (u), and consider a deformation process in
which Mij (u) interpolates between an initial MPM-like Mij (u) (tending to a constant in the
past) and a final MBSS

ij (u) of the form of u2. The question is then to know (i) whether the RHS of
equation (A.4) admits any limit after this continuous deformation process, and (ii) what is the
value of this limit. In mathematical terms the question is essentially a question of interchange
of a limit with an integral operation, i.e. whether limn

∫
fn(u) du = ∫

limn fn(u) du holds, for
a sequence of functions fn(u). As we know the answer is positive under ‘good’ conditions,
for instance of uniform convergence, or more generally (Lebesgue’s theorem) of dominated
convergence, which says essentially that if |fn(u)| < g(u) and if

∫
g(u) du is finite, then

we can interchange the limits. In our case, we can use Lebesgue’s theorem of dominated
convergence (see, e.g., the book [39]), which is both simple and powerful.

The only delicate term in the RHS of (A.4) is the last, integral term. We must interpolate
between some initial M̈ij (u) which vanishes in the past to become a constant in the future, and
a final M̈BSS

ij (u) which is always constant. It is clear that we can do this interpolation in a way
that |M̈ij (u)| remains always bounded. Using such a bound in the last term of (A.4), which is
a three-dimensional (retarded) integral, we easily see that, under the assumption of a bounded
|M̈ij (u)|, the integrand is bounded by a (positive) function which is integrable (because of
the fast convergence brought by the r−5 factor, together with the 1/r factor contained in the
propagator). Therefore, we can indeed interchange the limiting process and the integration
one, and conclude that the limit of the LHS of equation (A.4) exists, and is simply given
by replacing Mij (u) in the RHS by its limiting expression for a BSS which is MBSS

ij (u)

proportional to u2. As, under this limit, the integrand of the last term in (A.4) becomes time
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independent, we can explicitly compute the limit by replacing the retarded propagator by a
Poisson integral. Hence, we get

FP
B=0

� −1
R

[(
r

r0

)B

r−5n̂abM
2M̈ab

]
= FP

B=0
�−1

[(
r

r0

)B

r−5n̂ab

]
M2M̈ab

= −1

5
r−5

[
1

5
+ ln

(
r

r0

)]
n̂abM

2M̈ab. (A.5)

One easily checks that the result (A.5) agrees with the more formal way of doing the calculation
which consists of applying the formula (A.13) of [33] to the BSS case. As we can see, the last
term in the RHS of the latter formula, which is given by a ‘tail’ integral, vanishes when we
insert the BSS quadrupole into the source term of the retarded integral, since this source term
involves in fact the fifth time derivative of the BSS quadrupole which is zero. On the other
hand, the logarithmic term in formula (A.13) of [33] does remain, and then we recover exactly
equation (A.5)—with the same constant r0 on both sides of the equation. The proof that
we have detailed above, based on Lebesgue’s theorem of dominated convergence, rigorously
justifies (for the case at hand) that one can ‘blindly’ use the formulae in the appendix of [33]
even for the case of the BSS.

Finally, gathering equations (A.4) and (A.5) we obtain

h00
can 3 = n̂abM

2

(
−516

14
r−5Mab(u) − 516

14
r−4Ṁab(u) +

[
−2542

245
+

116

7
ln

(
r

r0

)]
r−3M̈ab

)
,

(A.6)

which shows by comparing to (3.21) and (3.22) that the coefficient we are seeking is

ρ = 1271

735
− 58

21
ln

(
r

r0

)
. (A.7)

The cubic multipole interaction M × Mi × Mj takes much longer to obtain because we
are obliged to compute it from scratch (no earlier results in the literature are available). At
linearized order the metric reads

h00
can 1 = −4r−1M + 4∂a[r−1Ma(u)], (A.8a)

hi0
can 1 = −4r−1Ṁi(u), (A.8b)

h
ij

can 1 = 0. (A.8c)

Straightforward calculations following the MPM algorithm then yield the part of the metric at
quadratic order corresponding to the multipole couplings M × Mi and Mi × Mj ,

h00
can 2 = naM(−14r−3Ma − 14r−2Ṁa) + n̂ab(−7r−4MaMb − 14r−3MaṀb − 36r−2ṀaṀb)

+
(− 7

3 r−4MaMa − 14
3 r−3MaṀa + 23

9 r−2ṀaṀa

)
, (A.9a)

hi0
can 2 = −n̂iar

−2MṀa − 22
3 r−2MṀi

+ n̂iab(−2r−3MaṀb − 2r−2ṀaṀb) + ni

(− 17
5 r−3MaṀa − 17

5 r−2ṀaṀa

)
+ na

(
r−3

[− 37
5 ṀiMa + 18

5 MiṀa

] − 19
5 r−2ṀiṀa

)
, (A.9b)

h
ij

can 2 = n̂ijaM(−4r−3Ma − 4r−2Ṁa) + δijnaM
(− 4

5 r−3Ma − 4
5 r−2Ṁa

)
+ n(iM

(
2
5 r−3Mj) + 2

5 r−2Ṁj)

)
+ n̂ijab

(− 9
2 r−4MaMb − 9r−3MaṀb − 4r−2ṀaṀb

)
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+ δij n̂ab

(− 1
7 r−4MaMb − 2

7 r−3MaṀb + 24
7 r−2ṀaṀb

)
+ n̂a(i

(− 4
7 r−4MaMj) − 4

7 r−3[ṀaMj) + MaṀj)] − 58
7 r−2ṀaṀj)

)
+ n̂ij

(
6
7 r−4MaMa + 12

7 r−3MaṀa + 31
7 r−2ṀaṀa

)
+ δij

(− 2
15 r−4MaMa − 4

15 r−3MaṀa − 19
15 r−2ṀaṀa

)
+ 1

15 r−4MiMj + 2
15 r−3M(iṀj) − 38

15 r−2ṀiṀj . (A.9c)

Using such expressions (A.8) and (A.9) we next obtain the source term at the cubic-order
approximation M ×Mi ×Mj . We are interested only in its 00 component which is then found
to be

�00
can 3 = n̂ab(−324r−7MMaMb − 648r−6MMaṀb − 112r−5MṀaṀb)

− 160r−7MMaMa − 320r−6MMaṀa − 644

9
r−5MṀaṀa. (A.10)

The integration proceeds exactly in the same way as in equations (A.4) and (A.5). Again, the
problem is that of interchanging a limiting process Ṁi(u) −→ ṀBSS

i (u) with the retarded
integration, and this can be proved by using the Lebesgue theorem, because the various powers
of 1/r in the RHS of (A.10) ensure that, in a process where |Ṁi(u)| remains bounded, the
integral is bounded by a positive convergent integral. And again the result agrees with the one
we would formally obtain by using the formulae in the appendix of [33]. As before, we have
v00

can 3 = 0 from the argument concerning the multipolarity � = 0, 1 of this special piece. Our
result is then

h00
can 3 = n̂ab

(
−162

7
r−5MMaMb − 324

7
r−4MMaṀb

+

[
−5836

245
− 232

7
ln

(
r

r0

)]
r−3MṀaṀb

)

− 8r−5MMaMa − 16r−4MMaṀa +
110

27
r−3MṀaṀa, (A.11)

from which one recognizes, on comparison with (3.21) and (3.22), that

η = 2918

735
+

116

21
ln

(
r

r0

)
. (A.12)
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[37] Blanchet L, Damour T, Esposito-Farèse G and Iyer B R 2004 Dimensional regularization of the third post-

Newtonian gravitational wave generation of two point masses, in preparation
[38] Blanchet L 1996 Phys. Rev. D 54 1417 (Preprint gr-qc/9603048)
[39] Choquet-Bruhat Y, DeWitt-Morette C and Dillard-Bleick M 1982 Analysis, Manifolds and Physics (Amsterdam:

North-Holland)


