Gravitational-wave tails of tails

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 Class. Quantum Grav. 223381
(http://iopscience.iop.org/0264-9381/22/16/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 194.167.0.52
The article was downloaded on 22/06/2011 at 19:03

Please note that terms and conditions apply.

Corrigendum

Gravitational-wave tails of tails

L Blanchet 1998 Class. Quantum Grav. 15 113-141

The contribution of tails in the flux of gravitational waves \mathcal{L} from compact binaries at 3.5PN order has been incorrectly computed. The tails at this order arise from interaction between the mass monopole moment M of the source and higher-order multipole moments. When replacing these moments into equation (4.19) in the case of compact binary systems it was incorrectly assumed that the mass M is just given by the sum of the rest masses, $m=m_{1}+m_{2}$. However M is in fact given by the ADM mass of the binary and should involve relativistic corrections. The same error has been made for the tails at relative 2.5 PN order in [1]. At relative 2 PN order we have (using the notation of the paper)

$$
\begin{equation*}
M=m\left[1-\frac{v}{2} \gamma+\frac{v}{8}(7-v) \gamma^{2}+\mathcal{O}\left(\frac{1}{c^{6}}\right)\right] . \tag{1}
\end{equation*}
$$

These corrections affect the tails at 2.5PN and 3.5PN orders for compact binaries. As a result equations ($5.5 a$) and ($5.5 b$) are changed to

$$
\begin{align*}
& \mathcal{L}_{\text {tail }}=\frac{32 c^{5}}{5 G} v^{2} \gamma^{5}\left\{4 \pi \gamma^{3 / 2}-\left(\frac{25663}{672}+\frac{125}{8} v\right) \pi \gamma^{5 / 2}\right. \\
&\left.+\left(\frac{90205}{576}+\frac{505747}{1512} v+\frac{12809}{756} v^{2}\right) \pi \gamma^{7 / 2}+O\left(\gamma^{4}\right)\right\} \tag{2}\\
& \mathcal{L}_{\text {tail }}=\frac{32 c^{5}}{5 G} v^{2} x^{5}\left\{4 \pi x^{3 / 2}-\left(\frac{8191}{672}+\frac{583}{24} v\right) \pi x^{5 / 2}\right. \\
&\left.+\left(-\frac{16285}{504}+\frac{214745}{1728} v+\frac{193385}{3024} v^{2}\right) \pi x^{7 / 2}+O\left(x^{4}\right)\right\} \tag{3}
\end{align*}
$$

The tails-of-tails at 3PN order are not modified.

References

[1] Blanchet L 1996 Phys. Rev. D 541417 (Preprint gr-qc/9603048)

