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Gravitational-wave tails of tails

Luc Blanchet
Département d’Astrophysique Relativiste et de Cosmologie (UPR 176 du CNRS), Observatoire
de Paris, 92195 Meudon Cedex, France

Received 17 July 1997

Abstract. The tails of gravitational waves are caused by the scattering of linear waves onto
the spacetime curvature generated by the total mass–energy of the source. Quite naturally, the
tails of tails are caused by curvature scattering of the tails of waves themselves. The tails of tails
are associated with the cubic nonlinear interaction between two mass monopole moments and,
dominantly, the mass quadrupole of the source. In this paper we determine the radiation field at
large distances from the source for this particular monopole–monopole–quadrupole interaction.
We find that the tails of tails appear at the third post-Newtonian (3PN) order beyond the usual
quadrupole radiation. Motivated by the need for accurate templates to be used in the data
analysis of future detectors of gravitational waves, we compute the contribution of tails, and
of tails of tails, up to the 3.5PN order in the energy flux generated by in-spiralling compact
binaries.

PACS numbers: 0425N, 0430D

1. Introduction

1.1. Motivation and overview

Gravitational waves propagating through vacuum from their source to infinity share all
possible contributions associated with products of multipole moments—indeed, this is a
consequence of the infinite nonlinearity of the field equations.

At the quadratic nonlinear order, two multipole interactions play a prominent role (and
yield effects which are representative of that order). The first interaction is that of the (mass-
type) quadrupole momentMpq(t), which dominates the radiation field for slowly-moving
sources, with itself. See [1] and references therein for the computation and discussion of this
interaction (henceforth we shall refer to [1] as paper I). The second interaction is between
Mpq(t) and the static mass monopole momentM of the source (the Schwarzschild mass, or,
more precisely, the ADM mass of the source). Such an interactionM×Mpq(t) is physically
due to the propagation of quadrupole waves on the Schwarzschild background associated
with M. In particular, the scattering of waves onto the potential barrier of the Schwarzschild
metric produces the so-called tails, which are pieces of the field depending on the parameters
of the source at all instants from−∞ in the past up to the retarded timet − r/c.

The numerous works related or devoted to tails include some mathematical investigations
of curved spacetime wave equations [2–9], several investigations and constructions of
post-Minkowskian expansions [10–17], the studies of the linear perturbations of the
Schwarzschild metric by fields of various spins [18–24], some discussions of physical
properties of tails [25–31, 51], and the development of accurate wave-generation formalisms
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[52, 53, 32–35]. Not only do the tails exist as theoretical objects predicted by general
relativity, but they should exist in the future as real observed phenomena. Indeed the
presence of tails in the gravitational-wave signals generated by in-spiralling compact binaries
should be deciphered by the planned experiments VIRGO and LIGO (see [30, 31, 36, 37]).

In the present paper we develop this subject further by computing thecubic interaction
between the quadrupoleMpq(t) and two monopolesM. Physically this ‘monopole–
monopole–quadrupole’ interaction is responsible for the scattering of the linear quadrupole
wavesMpq onto the second-order (M2) potential barrier of the Schwarzschild metric, and
for the scattering of the quadratic tailsM×Mpq themselves onto the first-order (M) potential
barrier. The latter effect produces the so-called ‘tails of tails’ of gravitational waves, as
they can pictorially be referred to. In fact we shall employ this crude appellation for the
wholeM2×Mpq interaction.

Like the quadratic tails, the cubic tails of tails could be computed using black-hole
perturbation techniques. In this paper, we instead employ the particular post-Minkowskian
approximation method proposed in [16], and which is used to compute the quadratic metric
Mpq ×Mrs in paper I. In section 2 we recall from previous work some relevant results on
linear and quadratic metrics, and we determine the cubic source term in the field equations
(in vacuum) corresponding to the looked-for interactionM2 × Mpq . Then we compute
in section 3 the (finite part of the) retarded integral of this cubic source term, restricting
ourselves to the leading-order 1/r in the distance to the source. The complete radiation
field for theM2×Mpq interaction is obtained, and discussed, in section 4.

We find that the tails of tails carry a supplementary factor 1/c6 with respect to the
dominant quadrupole radiation, and therefore contribute to the radiation field at the so-called
third post-Newtonian (3PN) order. Such a high post-Newtonian order isa priori quite small
in absolute magnitude, but it is still relevant to the observations of in-spiralling compact
binaries by VIRGO and LIGO [36–40, 56]. Essentially the post-Newtonian corrections
in the field affect, through gravitational radiation reaction, the evolution of the binary’s
orbital phase, and the latter observable will be monitored very accurately in future detectors
thanks to the large number of observed periods of rotation. In the author’s opinion, it is
remarkable that such a cubically nonlinear effect as a tail of tail should be known in advance
for comparison with real observations—and, therefore, should in principle bedetectedat
the same time. In section 5 we compute the tails of tails at 3PN order occuring in the
total energy flux generated by in-spiralling compact binaries (the energy flux is the crucial
quantity to predict because it yields, via an energy balance argument, the effects of radiation
reaction). We also compute the contribution of quadratic tails at the 3.5PN order (extending
previous results at the 1.5PN and 2.5PN orders). Besides the tails of tails at 3PN in the
energy flux of binaries, there are also some ‘instantaneous’ contributions, the computation
of which is in progress [54, 55].

In the particular case where the mass of one body is very small compared with the other
mass, the radiation field of compact binaries has been computed analytically up to a very
high post-Newtonian approximation [46–49]: notably up to the 4PN order [48] and, more
recently, 5.5PN order [49]. Our results in section 5 are in perfect agreement, wherever the
comparison can be made, with these latter works.

The notation and conventions are essentially the same as in paper I†. In order to reduce

† Our notation is the following: signature−+++; Greek indices= 0, 1, 2, 3; Latin indices= 1, 2, 3; g =
det(gµν); ηµν = ηµν = flat metric= diag(−1, 1, 1, 1); r = |x| = (x2

1 + x2
2 + x2

3)
1/2; ni = ni = xi/r; ∂i = ∂/∂xi ;

nL = nL = ni1ni2 · · · ni` and ∂L = ∂i1∂i2 · · · ∂i` , whereL = i1i2 · · · i` is a multi-index with` indices;nL−1 =
ni1 · · · ni`−1, naL−1 = nanL−1, etc; n̂L and∂̂L are the (symmetric) and trace-free (STF) parts ofnL and∂L, also de-
noted byn〈L〉, ∂〈L〉; the superscript(n) denotesn time derivatives;T(αβ) = 1

2(Tαβ +Tβα) andT(ij) = 1
2(Tij +Tji ).
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clutter we setG = c = 1 whenever their presence is not essential. For a short review on
the post-Minkowskian method we refer the reader to section 2 of paper I.

1.2. Notation for the field equations

Our basic field variable ishαβ = √−g gαβ − ηαβ , with gαβ the contravariant metric,g
the determinant of the covariant metric, andηαβ the Minkowski metric in Minkowskian
coordinates (signature−+++). Subject to the condition of harmonic coordinates,

∂βh
αβ = 0 , (1.1)

the vacuum field equations read

�hαβ = Nαβ(h, h)+Mαβ(h, h, h)+O(h4) , (1.2)

where� denotes the flat d’Alembertian operator, and where the source term in the right-
hand side is made of an infinite sum of quadratic, cubic, and so on, functionals ofhαβ and
its first and second derivatives. The quadratic and cubic terms are given by

Nαβ(h, h) = −hµν∂µ∂νhαβ + 1
2∂

αhµν∂
βhµν − 1

4∂
αh∂βh

− 2∂(αhµν∂
µhβ)ν + ∂νhαµ(∂νhβµ + ∂µhβν)

+ ηαβ[− 1
4∂ρhµν∂

ρhµν + 1
8∂µh∂

µh+ 1
2∂µhνρ∂

νhµρ
]
, (1.3)

Mαβ(h, h, h) = −hµν(∂αhµρ∂βhρν + ∂ρhαµ∂ρhβν − ∂µhαρ∂νhβρ)
+ hαβ[− 1

4∂ρhµν∂
ρhµν + 1

8∂µh∂
µh+ 1

2∂µhνρ∂
νhµρ

]+ 1
2h

µν∂(αhµν∂
β)h

+ 2hµν∂ρh
(α
µ ∂

β)hρν + hµ(α
(
∂β)hνρ∂µh

νρ − 2∂νh
β)
ρ ∂µh

νρ − 1
2∂

β)h∂µh
)

+ ηαβ[ 1
8h

µν∂µh∂νh− 1
4h

µν∂ρhµν∂
ρh− 1

4h
ρσ ∂ρhµν∂σh

µν

− 1
2h

ρσ ∂µhρν∂
νhµσ + 1

2h
ρσ ∂µh

ν
ρ∂

µhσν
]
. (1.4)

The higher-order terms are even more complicated but will not be needed in this paper.

2. The monopole–monopole–quadrupole source term

2.1. The linear and quadratic metrics

We look for a solution of the equations (1.1)–(1.4) in the form of a post-linear (or post-
Minkowskian) expansion

hαβ = Ghαβ1 +G2h
αβ

2 +G3h
αβ

3 + · · · , (2.1)

whereG denotes Newton’s constant. The harmonic coordinate condition (1.1) implies that
all the coefficients of theGn are divergenceless. On the other hand, the field equations
(1.2) imply that the coefficients of anyGn obey a d’Alembertian equation whose source is
known from the previous coefficients, i.e. coefficients of theGm’s where 16 m 6 n − 1
(see, e.g., section 2 in paper I).

Our starting point is the linearized metrichαβ1 defined by equation (2.3) of paper I. This
metric is in the form of a multipolar series parametrized by symmetric and trace-free (STF)
mass-type multipole momentsML (` > 0) and current-type multipole momentsSL (` > 1).
These moments reduce, in the Newtonian limitc→∞, to the usual Newtonian multipole
moments [14]. As we are ultimately interested only in the cubic interaction between two
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monopolesM and the quadrupoleMpq , we retain in the linearized metric only the terms
involving M andMpq . Accordingly we denote

h
αβ

1 = hαβ(M) + hαβ(Mpq)
. (2.2)

The monopole term reads

h00
(M) = −4r−1M , (2.3a)

h0i
(M) = hij(M) = 0 . (2.3b)

This is simply the linearized piece of the Schwarzschild metric in harmonic coordinates,
for which only the 00 component of our field variable is non-zero. The quadrupole term in
(2.2) is

h00
(Mpq)
= −2∂ab

[
r−1Mab(t − r)

]
, (2.4a)

h0i
(Mpq)
= 2∂a

[
r−1M

(1)
ai (t − r)

]
, (2.4b)

h
ij

(Mpq)
= −2r−1M

(2)
ij (t − r) . (2.4c)

We use the same notation as in (2.3) of paper I, which gives the complete linearized metric
including all multipole terms. In the following we need the metric (2.4) in expanded form,
where the spatial derivatives acting on bothr−1 and t − r are worked out. We have

h00
(Mpq)
= −2nabr

−3
{
3Mab + 3rM(1)

ab + r2M
(2)
ab

}
, (2.5a)

h0i
(Mpq)
= −2nar

−2
{
M
(1)
ai + rM(2)

ai

}
, (2.5b)

h
ij

(Mpq)
= −2r−1M

(2)
ij . (2.5c)

Henceforth, we generally do not indicate the dependence of the moments ont − r.
Consider the quadratic metrichαβ2 generated by the linear metric (2.2)–(2.5). It is clear

thathαβ2 involves a term proportional toM2, the mixed term corresponding to the interaction
M ×Mpq , and the term corresponding to the self-interaction ofMpq , thus

h
αβ

2 = hαβ(M2)
+ hαβ(MMpq)

+ hαβ(MpqMrs )
. (2.6)

The first term is the quadratic piece of the Schwarzschild metric in harmonic coordinates,

h00
(M2)
= −7r−2M2 , (2.7a)

h0i
(M2)
= 0 , (2.7b)

h
ij

(M2)
= −nij r−2M2 , (2.7c)

with four-dimensional trace (h ≡ ηαβhαβ)

h(M2) = 6r−2M2 . (2.7d)

The term h
αβ

(MMpq)
, which constitutes the dominant non-static multipole interaction at

the quadratic order, obeys a d’Alembertian equation whose source is given by (1.3)
where (2.3) and (2.5) are inserted, and which can be written, with obvious notation,
as Nαβ(h(M), h(Mpq)) + Nαβ(h(Mpq), h(M)). The solution of this d’Alembertian equation,

and, then, the complete metrichαβ(MMpq)
itself, is obtained using the present method. The

monopole–quadrupole metric is the analogue of the 2–2 metric in Bonnor’s double series
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method [10]. We simply report the result of its computation, which can be found in
appendix B of [32]:

M−1h00
(MMpq)

= nabr−4
{− 21Mab − 21rM(1)

ab + 7r2M
(2)
ab + 10r3M

(3)
ab

}
+ 8nab

∫ +∞
1

dx Q2(x)M
(4)
ab (t − rx) , (2.8a)

M−1h0i
(MMpq)

= niabr−3
{−M(1)

ab − rM(2)
ab − 1

3r
2M

(3)
ab

}
+ nar−3

{− 5M(1)
ai − 5rM(2)

ai + 19
3 r

2M
(3)
ai

}
+ 8na

∫ +∞
1

dx Q1(x)M
(4)
ai (t − rx) , (2.8b)

M−1h
ij

(MMpq)
= nijabr−4

{− 15
2 Mab − 15

2 rM
(1)
ab − 3r2M

(2)
ab − 1

2r
3M

(3)
ab

}
+ δijnabr−4

{− 1
2Mab − 1

2rM
(1)
ab − 2r2M

(2)
ab − 11

6 r
3M

(3)
ab

}
+ na(ir−4

{
6Mj)a + 6rM(1)

j)a + 6r2M
(2)
j)a + 4r3M

(3)
j)a

}
+ r−4

{−Mij − rM(1)
ij − 4r2M

(2)
ij − 11

3 r
3M

(3)
ij

}
+ 8

∫ +∞
1

dx Q0(x)M
(4)
ij (t − rx) , (2.8c)

with four-dimensional trace

M−1h(MMpq) = nabr−4
{
18Mab + 18rM(1)

ab − 10r2M
(2)
ab − 12r3M

(3)
ab

}
− 8 nab

∫ +∞
1

dx Q2(x)M
(4)
ab (t − rx) . (2.8d)

The metric is composed of two types of terms, instantaneous terms depending on the
quadrupole moment at timet − r only, and non-local (or hereditary) integrals depending on
all times from−∞ in the past tot − r. The usual tail effects are contained in the non-local
integrals of (2.8). Note that the non-local integrals come exclusively from the source terms
whose radial dependence isr−2 (see section 3 of paper I and (3.1) below). The integrals are
expressed in (2.8) by means of the Legendre function of the second kindQ` (with branch
cut from−∞ to 1), which is related to the Legendre polynomialP` by

Q`(x) = 1
2

∫ 1

−1
P`(y)

dy

x − y (2.9a)

= 1
2P`(x) ln

(
x + 1

x − 1

)
−
∑̀
j=1

1

j
P`−j (x)Pj−1(x) (2.9b)

(the first of these relations is known as Neumann’s formula for the Legendre function,
see, e.g., [50]); see also (A.15) in appendix A for still another expression of the Legendre
function. For future reference we quote here the expansion ofQ` whenx → 1 (with x > 1),

Q`(x) = − 1
2 ln

(
x − 1

2

)
−
∑̀
j=1

1

j
+O[(x − 1) ln(x − 1)] . (2.9c)
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(On the other hand, recall that the Legendre function behaves like 1/x`+1 whenx →+∞.)
Finally, the termhαβ(MpqMrs )

in (2.6) is the quadrupole–quadrupole metric whose computation
was the subject of paper I (we do not need this term in the present paper).

Now, the cubic metrichαβ3 is made out of all possible interactions of three moments
chosen (with repetition) amongM and the quadrupoleMpq , and is therefore constituted of
four terms,

h
αβ

3 = hαβ(M3)
+ hαβ

(M2Mpq)
+ hαβ(MMpqMrs )

+ hαβ(MpqMrsMtu)
. (2.10)

Of these terms only the first one is known within the present approach (before this paper):
this is the cubic piece of the Schwarzschild metric that we give here for completeness,

h00
(M3)
= −8r−3M3 , (2.11a)

h0i
(M3)
= hij

(M3)
= 0 . (2.11b)

The termhαβ
(M2Mpq)

is the monopole–monopole–quadrupole metric, which will be dealt with
in the present paper. The two last terms, which involve at least the interaction of two
quadrupole moments, will be left undetermined for the time being.

2.2. Expression of the cubic source

The metric hαβ
(M2Mpq)

obeys the harmonic-coordinates condition∂βh
αβ

(M2Mpq)
= 0 and a

d’Alembertian equation whose source exhausts all possibilities of generating the multipole
interactionM2×Mpq by means of linear and quadratic metrics. From (1.2), one has

�hαβ
(M2Mpq)

= 3αβ

(M2Mpq)
, (2.12)

where the source term3αβ

(M2Mpq)
is obtained fromNαβ andMαβ defined in (1.3) and (1.4)

as

3
αβ

(M2Mpq)
= Nαβ

(
h(M2), h(Mpq)

)+Nαβ
(
h(Mpq), h(M2)

)
+Nαβ

(
h(M), h(MMpq)

)+Nαβ
(
h(MMpq), h(M)

)
+Mαβ

(
h(M), h(M), h(Mpq)

)+Mαβ
(
h(M), h(Mpq), h(M)

)
+Mαβ

(
h(Mpq), h(M), h(M)

)
. (2.13)

In the first and second lines a linear metric is coupled to a quadratic one, while in the third
and fourth lines three linear metrics are coupled together. The metrics have been distributed
with all possible combinations of the nonlinear sources (1.3) and (1.4).

Using the explicit formulae (2.3), (2.5), (2.7) and (2.8), one obtains the cubic source
term3αβ

(M2Mpq)
after a tedious but straightforward computation. As the monopole–quadrupole

metric (2.8) involves some non-local integrals, so does3
αβ

(M2Mpq)
, which can thus be split

into a local (instantaneous) part, sayIαβ
(M2Mpq)

, and a non-local (tail) part,T αβ
(M2Mpq)

:

3
αβ

(M2Mpq)
= Iαβ

(M2Mpq)
+ T αβ

(M2Mpq)
. (2.14)

The result for the instantaneous part is

M−2I 00
(M2Mpq)

= nabr−7
{−516Mab − 516rM(1)

ab − 304r2M
(2)
ab

− 76r3M
(3)
ab + 108r4M

(4)
ab + 40r5M

(5)
ab

}
, (2.15a)
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M−2I 0i
(M2Mpq)

= n̂iabr−6
{
4M(1)

ab + 4rM(2)
ab − 16r2M

(3)
ab + 4

3r
3M

(4)
ab − 4

3r
4M

(5)
ab

}
+ nar−6

{− 372
5 M

(1)
ai − 372

5 rM
(2)
ai − 232

5 r
2M

(3)
ai − 84

5 r
3M

(4)
ai + 124

5 r
4M

(5)
ai

}
,

(2.15b)

M−2I
ij

(M2Mpq)
= n̂ijabr−5

{−190M(2)
ab − 118rM(3)

ab − 92
3 r

2M
(4)
ab − 2r3M

(5)
ab

}
+ δijnabr−5

{
160
7 M

(2)
ab + 176

7 rM
(3)
ab − 596

21 r
2M

(4)
ab − 160

21 r
3M

(5)
ab

}
+ n̂a(ir−5

{− 312
7 M

(2)
j)a − 248

7 rM
(3)
j)a + 400

7 r
2M

(4)
j)a + 104

7 r
3M

(5)
j)a

}
+ r−5

{−12M(2)
ij − 196

15 rM
(3)
ij − 56

5 r
2M

(4)
ij − 48

5 r
3M

(5)
ij

}
(2.15c)

(we recall, e.g., that in our notation̂nijab denotes the STF projection ofnijab ≡ ninjnanb).
The tail part is composed of sums of products of local terms with derivatives of tail
terms. Using some elementary properties of the Legendre function (namelyxQ1(x) =
2
3Q2(x)+ 1

3Q0(x) andxQ2(x) = 3
5Q3(x)+ 2

5Q1(x)), we obtain

M−2T 00
(M2Mpq)

= nabr−3
∫ +∞

1
dx
{
96Q0M

(4)
ab +

[
272
5 Q1+ 168

5 Q3
]
rM

(5)
ab + 32Q2r

2M
(6)
ab

}
,

(2.16a)

M−2T 0i
(M2Mpq)

= n̂iabr−3
∫ +∞

1
dx
{−32Q1M

(4)
ab +

[− 32
3 Q0+ 8

3Q2
]
rM

(5)
ab

}
+ nar−3

∫ +∞
1

dx
{

96
5 Q1M

(4)
ai +

[
192
5 Q0+ 112

5 Q2
]
rM

(5)
ai + 32Q1r

2M
(6)
ai

}
,

(2.16b)

M−2T
ij

(M2Mpq)
= n̂ijabr−3

∫ +∞
1

dx
{−32Q2M

(4)
ab +

[− 32
5 Q1− 48

5 Q3
]
rM

(5)
ab

}
+ δijnabr−3

∫ +∞
1

dx
{− 32

7 Q2M
(4)
ab +

[− 208
7 Q1+ 24

7 Q3
]
rM

(5)
ab

}
+ n̂a(ir−3

∫ +∞
1

dx
{

96
7 Q2M

(4)
j)a +

[
2112
35 Q1− 192

35Q3
]
rM

(5)
j)a

}
+ r−3

∫ +∞
1

dx
{

32
5 Q2M

(4)
ij +

[
1536
75 Q1− 96

75Q3
]
rM

(5)
ij + 32Q0r

2M
(6)
ij

}
,

(2.16c)

(where the Legendre functions are computed atx and the moments att − rx). At this
stage we have a good check that the computation is going well. Indeed3

αβ

(M2Mpq)
is the

source of the third-order field equations in harmonic coordinates and therefore should be
divergenceless. The divergence of the tail piece (2.16) is computed using the Legendre
equation(1− x2)Q′′`(x)− 2xQ′`(x)+ `(`+ 1)Q`(x) = δ+(x − 1), where the distribution
δ+ is defined by

∫ +∞
1 dx δ+(x − 1)φ(x) = φ(1) for any test functionφ. We find that all

the tail integrals disappear, and get

M−2∂βT
0β
(M2Mpq)

= nabr−4
{−48M(4)

ab − 48rM(5)
ab − 16r2M

(6)
ab

}
, (2.17a)

M−2∂βT
iβ

(M2Mpq)
= niabr−4

{−8M(4)
ab − 16rM(5)

ab

}− 32nar
−2M

(6)
ai . (2.17b)
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On the other hand, the divergence of the instantaneous piece is computed directly from
(2.15). We readily obtain that it cancels exactly (2.17) so that the required condition

∂β3
αβ

(M2Mpq)
= 0 (2.18)

is fulfilled.

3. The retarded integral of the source term

The previous check being done, we confidently tackle the difficult part of the analysis,
namely to find the inversion of the d’Alembert equation with source term given by (2.14)–
(2.16). We shall limit ourselves to the computation of the metric at large distances from
the source (r →∞ with t − r = constant), keeping only the dominant 1/r term at infinity
(possibly multiplied by some powers of lnr). This is sufficient in view of applications to
astrophysical sources of gravitational radiation.

3.1. Integrating the instantaneous terms

The general form of the terms composing (2.15) isn̂Lr−kF (t − r), wheren̂L is equivalent
to a spherical harmonics of order`, and where the radial dependence is such thatk > 2.
So let us review the formulae required to compute the 1/r (and lnr/r) terms at infinity of
the retarded integral of any source termn̂Lr−kF (t − r). Recall that in general the retarded
integral cannot be applied directly tônLr−kF (t−r) because of the singular behaviour when
r → 0. We follow the procedure proposed in [16] to obtain a particular retarded solution
(also singular whenr → 0) of the wave equation. It consists of first multiplying the source
term by a factor(r/r0)B , whereB is a complex number andr0 a constant length scale,
thereby defining aB-dependent fictitious source which, for large values of the real part
of B, is regular, and in fact tends to zero, whenr → 0 (i.e. the singularity atr = 0 is
killed). For large values of Re(B) one is thus allowed to apply the retarded integral to
the fictitious source (there is no problem at the boundr → ∞ of the integral because
the moments are assumed to be constant in the remote past). In this way one defines a
function ofB, a priori only for Re(B) large enough, but the point is that this function is
extendible by analytic continuation to all complex values ofB, except at some integer values
(including, in general, the value of interestB = 0), where it admits a Laurent expansion
with some poles. Now it has been shown [16] that near the valueB = 0 the finite part
of the Laurent expansionis a particular solution of the d’Alembertian equation we wanted
to solve. We call the operator giving this solution the finite part of the retarded integral,
and denote it by FPB=0�−1

R (r/r0)
B , or more simply by FP�−1

R . The finite part procedure
is especially convenient when doing practical computations. See appendix A in paper I for
a compendium of formulae, obtained with this procedure, enabling the computation of the
quadratic nonlinearities. More complicated formulae for computing the cubic nonlinearities
are reported in appendix A of the present paper.

For a source term of the typênLr−kF (t − r) three cases must be distinguished (as we
have alreadyk > 2): k = 2, 36 k 6 ` + 2, and` + 3 6 k (see appendix A of paper I).
The casek = 2 corresponds to a retarded integral, which is convergent (so the finite part
at B = 0 is unnecessary), and given by a non-local integral admitting an expansion when
r → ∞, t − r = constant in powers of 1/r with a logarithm ofr. The formula, already
used in (2.8) to express the tail integrals, reads

�−1
R

[
n̂Lr

−2F(t − r)] = −n̂L ∫ +∞
1

dx Q`(x)F (t − rx) , (3.1)
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whereQ` is the Legendre function (2.9). The leading term at infinity is obtained by using
the expansion ofQ` as given by (2.9c). We obtain [32]

�−1
R

[
n̂Lr

−2F(t − r)] = n̂L

2r

∫ +∞
0

dτ F (t − r − τ)
[

ln

(
τ

2r

)
+
∑̀
j=1

2

j

]
+O

(
ln r

r2

)
. (3.2)

In the case 36 k 6 `+ 2 (thus` > 1), we find that theB-dependent integral is finite (no
pole atB = 0), and is given by a simple local expression, without logarithms. The 1/r

term at infinity is

�−1
R

[
(r/r0)

Bn̂Lr
−kF (t − r)]∣∣

B=0

= − 2k−3(k − 3)!(`+ 2− k)!
(`+ k − 2)!

n̂L

r
F (k−3)(t − r)+O

(
1

r2

)
. (3.3)

In the last case,k > `+ 3, theB-dependent retarded integral admits a truly polar part, and
its finite part is given, as in (3.2), by a non-local integral, but now the expansion at infinity
involves no logarithms ofr (instead it involves the logarithm of the constantr0). We have,
for the 1/r term,

FP�−1
R

[
n̂Lr

−kF (t − r)] = (−1)k+`2k−3(k − 3)!

(k + `− 2)!(k − `− 3)!

n̂L

r

×
∫ +∞

0
dτ F (k−2)(t − r − τ)

[
ln

(
τ

2r0

)
+

k−`−3∑
j=1

1

j
+

k+`−2∑
j=k−2

1

j

]
+O

(
1

r2

)
.

(3.4)

With the formulae (3.2)–(3.4) it is straightforward to obtain the 1/r and lnr/r terms in
the finite part of the retarded integral (in short FP�−1

R ) of (2.15):

FP�−1
R

[
M−2I 00

(M2Mpq)

] = nab

r

∫ +∞
0

dτ M(5)
ab

{
20 ln

(
τ

2r

)
+ 116

21 ln

(
τ

2r0

)
+ 106 054

2205

}
+O

(
ln r

r2

)
, (3.5a)

FP�−1
R

[
M−2I 0i

(M2Mpq)

] = n̂iab

r

∫ +∞
0

dτ M(5)
ab

{
− 2

3 ln

(
τ

2r

)
− 4

105 ln

(
τ

2r0

)
− 26 044

11 025

}
+ na
r

∫ +∞
0

dτ M(5)
ia

{
62
5 ln

(
τ

2r

)
+ 416

75 ln

(
τ

2r0

)
+ 40 318

1125

}
+O

(
ln r

r2

)
,

(3.5b)

FP�−1
R

[
M−2I

ij

(M2Mpq)

] = n̂ijab

r

∫ +∞
0

dτ M(5)
ab

{
− ln

(
τ

2r

)
− 176

105

}
+ δijnab

r

∫ +∞
0

dτ M(5)
ab

{
− 80

21 ln

(
τ

2r

)
− 32

21 ln

(
τ

2r0

)
− 3146

315

}
+ n̂a(i

r

∫ +∞
0

dτ M(5)
j)a

{
52
7 ln

(
τ

2r

)
+ 104

35 ln

(
τ

2r0

)
+ 9472

525

}
+ 1

r

∫ +∞
0

dτ M(5)
ij

{
− 24

5 ln

(
τ

2r

)
+ 92

15 ln

(
τ

2r0

)
+ 94

15

}
+O

(
ln r

r2

)
,

(3.5c)
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where the moments are evaluated at timet − r − τ . Recall that in the case of the quadratic
nonlinearities, the non-local integrals come only from the source terms havingk = 2 (see
section 3 of paper I). This is not true in the case of the cubic (and higher) nonlinearities:
besides the integrals generated by the termsk = 2, there are some non-local integrals
generated by terms havingk > ` + 3. These integrals, given by (3.4), depend on the
constant length scaler0. Thus the particular solution which is picked up by the finite part
procedure depends on the constantr0 used in its definition. This is quite normal, and, of
course, not a problem—one needs only to be consistent in using this particular solution,
notably when relating the multipole moments which parametrize it to the source variables.

3.2. Integrating the tail terms

The effects which are physically associated with tails of tails come from the retarded
integration of the tail part of the cubic source, that isT αβ

(M2Mpq)
given by (2.16). The problem

is to find the (finite part of the) retarded integral of a source term involving a non-local
integral with some Legendre functionQm, namely

k,m9L ≡ FPB=0�−1
R

[
(r/r0)

Bn̂Lr
−k
∫ +∞

1
dx Qm(x)F (t − rx)

]
. (3.6)

We study only the needed cases, which correspond tok > 1 (note that with this notation
the actual radial dependence of the source whenr →∞, t − r = constant is 1/rk+1). Of
course, the problem is more complicated than in section 3.1, because the source term at a
given value oft − r is a more complicated function ofr.

The detailed computation ofk,m9L is relegated to appendix A. Here we report the main
results. The casek = 1 is the most interesting because it leads to qualitatively new results
with respect to the quadratic nonlinear order. Whenk = 1 we find the solution in closed
analytic form,

1,m9L = n̂L
∫ +∞

1
dy F (−1)(t − ry)

×
{
Q`(y)

∫ y

1
dx Qm(x)

dP`
dx
(x)+ P`(y)

∫ +∞
y

dxQm(x)
dQ`

dx
(x)

}
, (3.7)

where the time anti-derivative is defined byF (−1)(t) = ∫ t
−∞ dt ′ F(t ′) (all the functions

involved are zero in the remote past by our assumption of initial stationarity). The
solution (3.7) has been obtained thanks, in particular, to the mathematical formula (A.5) in
appendix A. To leading order whenr → ∞, t − r = constant, the second integral in the
brackets dominates the first one. Inspection of (2.16) shows that whenk = 1 we need only
the casem = `. Because the second integral in (3.7) can be explicitly worked out in this
case, we have a good simplification, since notably the dominant term at infinity follows
simply from the expansion (2.9c) of the Legendre function (see appendix A for details).
We find a non-local expression with lnr and ln2 r terms:

1,`9L = − n̂L
8r

∫ +∞
0

dτ F (−1)(t − r − τ)

×
[

ln2

(
τ

2r

)
+ 4

(∑̀
j=1

1

j

)
ln

(
τ

2r

)
+ 4

(∑̀
j=1

1

j

)2]
+ o

(
rε−2

)
. (3.8)

We use the notation o(rε−2) with a small o symbol to mean that the product of this remainder
with the factorr2−ε, whereε is such that 0< ε � 1, tends to zero whenr → ∞. This
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notation is simply to account for the presence of powers of logarithms in the expansion at
infinity.

In the case 26 k 6 `+ 2, the result is simpler (see appendix A) in the sense that it is
given by a local expression to order 1/r,

k,m9L = − k,mα`
n̂L

r
F (k−3)(t − r)+ o

(
rε−2

)
. (3.9)

However, the coefficient is still complicated:

k,mα` =
∫ +∞

1
dx Qm(x)

∫ +∞
x

dz
(z − x)k−3

(k − 3)!
Q`(z) . (3.10)

The numerical values of thek,mα`’s for generalk, `, andm are computed in (A.17), (A.18).
Here we need only some values corresponding tok = 2 andk = 3 (see (2.16)). These are
presented in tables 1 and 2, respectively.

Table 1. Values of the coefficientsk,mα` for k = 2.

m ` = 0 ` = 1 ` = 2 ` = 3 ` = 4

0 1
6π

2 1
2

1
4

11
72

5
48

1 1
2

1
18π

2 − 1
3

1
8

1
12

13
216

2 1
4

1
8

1
30π

2 − 1
4

1
18

1
24

3 11
72

1
12

1
18

1
42π

2 − 7
36

1
32

4 5
48

13
216

1
24

1
32

1
54π

2 − 205
1296

Table 2. Values of the coefficientsk,mα` for k = 3.

m ` = 1 ` = 2 ` = 3 ` = 4

0 1
18π

2 − 1
12

5
72

1
48

23
2700

1 1
8

1
90π

2 − 1
12

1
108

1
240

2 − 1
90π

2 + 1
6

1
72

1
210π

2 − 1
24

11
4320

3 7
216 − 1

210π
2 + 1

18
1

288
1

378π
2 − 79

3240

4 1
48

5
864 − 1

378π
2 + 37

1296
1

800

In the last casek > `+ 3, we again obtain a non-local integral, but with simply a 1/r

term without lnr (instead, there is a lnr0),

k,m9L = − n̂L
r

∫ +∞
0

dτ F (k−2)(t − r − τ)
[
k,mβ` ln

(
τ

2r0

)
+ k,mγ`

]
+ o

(
rε−2

)
. (3.11)

The coefficientsk,mβ` and k,mγ` are also rather involved,

k,mβ` = 1
2

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz
(z − x)k−3

(k − 3)!
P`(z) , (3.12a)

k,mγ` = 1
2

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz
(z − x)k−3

(k − 3)!
P`(z)

[
− ln

(
x − z

2

)
+

k−3∑
j=1

1

j

]
. (3.12b)
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Fortunately, these coefficients are needed only for the particular set of valuesk = 3,m = 2
and` = 0, corresponding to the only term present in (2.16) in this category, which is the
antepenultimate term in (2.16c). From (A.22) we find

3,2β0 = 1
6 , 3,2γ0 = 7

72 . (3.13)

With the expression (3.8), the values of coefficients in tables 1 and 2, and the two values
(3.13), we have the material for the computation of the retarded integral ofT

αβ

(M2Mpq)
. The

result reads

FP�−1
R

[
M−2T 00

(M2Mpq)

] = nab

r

∫ +∞
0

dτ M(5)
ab

{
− 4 ln2

(
τ

2r

)
− 24 ln

(
τ

2r

)
− 154

3

}
+ o(rε−2) , (3.14a)

FP�−1
R

[
M−2T 0i

(M2Mpq)

] = na

r

∫ +∞
0

dτ M(5)
ai

{
− 4 ln2

(
τ

2r

)
− 16 ln

(
τ

2r

)
− 202

5

}
+ 16

9

n̂iab

r
M
(4)
ab + o(rε−2) , (3.14b)

FP�−1
R

[
M−2T

ij

(M2Mpq)

] = 1

r

∫ +∞
0

dτ M(5)
ij

{
− 4 ln2

(
τ

2r

)
− 1

6 ln

(
τ

2r0

)
− 1217

120

}
+ 1

r

[
23
30n̂ijabM

(4)
ab + 226

63 δijnabM
(4)
ab − 52

7 na(iM
(4)
j)a

]+ o(rε−2) . (3.14c)

All the logarithms (and squared logarithms) are computed withτ/2r except for one, in the
last equation (3.14c), which is computed withτ/2r0 and comes from the formula (3.11).
The other logarithms, and squared logarithms, come from (3.8).

4. The monopole–monopole–quadrupole metric

4.1. The metric in the far zone

The retarded integral of the monopole–monopole–quadrupole source, namely

u
αβ

(M2Mpq)
= FP�−1

R [3αβ

(M2Mpq)
] , (4.1)

is obtained simply as the sum of (3.5) and (3.14). Let us now follow the method
proposed in [16] (see also section 2 of paper I), and add tou

αβ

(M2Mpq)
a supplementary

term v
αβ

(M2Mpq)
so designed as: (i) to be a solution of the homogeneous wave equation; and

(ii) to be such that the sum ofuαβ
(M2Mpq)

and vαβ
(M2Mpq)

is divergenceless. With (i) and (ii)
satisfied, a particular solution of the cubic-order field equations in harmonic coordinates is
u
αβ

(M2Mpq)
+ vαβ

(M2Mpq)
. Actually we do not follow exactly the construction proposed in [16],

but adopt the slightly modified construction ofvαβ
(M2Mpq)

defined by equations (2.11) and
(2.12) of paper I. Furthermore, as we control only the dominant behaviour at infinity of
the termuαβ

(M2Mpq)
, we must check that this weaker information still permits the construction

from the divergence ofuαβ
(M2Mpq)

of the corresponding 1/r term in vαβ
(M2Mpq)

. This poses no
problem, and the relevant formulae can be found in appendix B. The divergence ofu

αβ

(M2Mpq)
,

computed from (3.5) and (3.14), reads

∂β
[
M−2u

0β
(M2Mpq)

] = 176

105

nab

r
M
(5)
ab +O

(
1

r2

)
, (4.2a)
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∂β
[
M−2u

iβ

(M2Mpq)

] = na

r

∫ +∞
0

dτ M(6)
ia

{
− 9

10 ln

(
τ

2r0

)
− 1211

600

}
+ 36

35

n̂iab

r
M
(5)
ab +O

(
1

r2

)
. (4.2b)

Then the formulae (B.2)–(B.5) in appendix B give the 1/r term in vαβ
(M2Mpq)

as

M−2v00
(M2Mpq)

= O

(
1

r2

)
, (4.3a)

M−2v0i
(M2Mpq)

= 176

105

na

r
M
(4)
ai +O

(
1

r2

)
, (4.3b)

M−2v
ij

(M2Mpq)
= 1

r

∫ +∞
0

dτ M(5)
ij

{
− 9

10 ln

(
τ

2r0

)
− 499

280

}
+ 1

r

[− 72
35δijnabM

(4)
ab + 216

35 n̂a(iM
(4)
j)a

]+O

(
1

r2

)
. (4.3c)

The complete monopole–monopole–quadrupole metric, defined by

h
αβ

(M2Mpq)
= uαβ

(M2Mpq)
+ vαβ

(M2Mpq)
, (4.4)

is therefore obtained by adding up the expressions (3.5), (3.14) and (4.3). We obtain

M−2h00
(M2Mpq)

= nab

r

∫ +∞
0

dτ M(5)
ab

{
−4 ln2

(
τ

2r

)
− 4 ln

(
τ

2r

)
+ 116

21 ln

(
τ

2r0

)
− 7136

2205

}
+ o(rε−2) , (4.5a)

M−2h0i
(M2Mpq)

= n̂iab

r

∫ +∞
0

dτ M(5)
ab

{
− 2

3 ln

(
τ

2r

)
− 4

105 ln

(
τ

2r0

)
− 716

1225

}
+ na
r

∫ +∞
0

dτ M(5)
ai

{
−4 ln2

(
τ

2r

)
− 18

5 ln

(
τ

2r

)
+ 416

75 ln

(
τ

2r0

)
− 22 724

7875

}
+ o(rε−2) , (4.5b)

M−2h
ij

(M2Mpq)
= n̂ijab

r

∫ +∞
0

dτ M(5)
ab

{
− ln

(
τ

2r

)
− 191

210

}
+ δijnab

r

∫ +∞
0

dτ M(5)
ab

{
− 80

21 ln

(
τ

2r

)
− 32

21 ln

(
τ

2r0

)
− 296

35

}
+ n̂a(i

r

∫ +∞
0

dτ M(5)
j)a

{
52
7 ln

(
τ

2r

)
+ 104

35 ln

(
τ

2r0

)
+ 8812

525

}
+ 1

r

∫ +∞
0

dτ M(5)
ij

{
−4 ln2

(
τ

2r

)
− 24

5 ln

(
τ

2r

)
+ 76

15 ln

(
τ

2r0

)
− 198

35

}
+ o(rε−2) (4.5c)

(the moments in the integrands are evaluated att − r − τ ).
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4.2. The observable quadrupole moment

The computation we have done so far uses harmonic coordinates, which are convenient
for constructing solutions by means of a post-Minkowskian algorithm (essentially because
all the components of the field obey some wave equations). However, the harmonic
coordinates entail a small disadvantage, namely the associated coordinate conest−r deviate
by a logarithm ofr (in first approximation) from the true light cones along which gravity
propagates. As a result, the expansion of the metric whenr →∞, t−r = constant, involves,
besides the normal powers of 1/r, some powers of the logarithm ofr [41, 42, 16, 17]. This
is clear from the previous result (4.5). The logarithms can be gauged away by going to
some radiative coordinatesXµ, which are such that the associated coordinate conesT −R
(whereR = |X|) become asymptotically tangent to the true light cones at infinity. In this
paper it will be sufficient to check that the coordinate transformation

Xµ = xµ +Gξµ , (4.6a)

wherexµ are the harmonic coordinates andξµ is given by

ξ0 = −2M ln

(
r

r0

)
, ξ i = 0 , (4.6b)

does remove all the logarithms ofr in the particular case of the interactionM2×Mpq (and
at leading order at infinity). Note that we have introduced in the coordinate transformation
(4.6) thesameconstantr0 as used in the definition of the finite-part process in section 3.
Actually we could have introduced any constantr1. However, the choicer1 = r0, which is
simply a choice of gauge (equivalent to a choice of the origin of time in the far zone), is
especially convenient, as it will simplify some formulae below.

Under the coordinate transformation (4.6), the metric is changed to

H
µν

(M2Mpq)
(X) = hµν

(M2Mpq)
(X)− ξλ∂λhµν(MMpq)

+ 1
2ξ

λξσ ∂λσh
µν

(Mpq)
+ o

(
Rε−2

)
, (4.7)

where we keep only the terms corresponding to the interactionM2×Mpq and neglect all sub-
dominant terms o(Rε−2). Both sides of (4.7) are expressed with the radiative coordinates
Xµ. We substitute in the right-hand side the harmonic-coordinates’ linear metric (2.5),
quadratic metric (2.8), and cubic metric (4.5), and find that all logarithms disappear to order
1/R, so that we obtain the ‘radiative’ metric

M−2H 00
(M2Mpq)

= Nab

R

∫ +∞
0

dτ M(5)
ab (TR − τ)

{
− 4 ln2

(
τ

2r0

)
+ 32

21 ln

(
τ

2r0

)
− 7136

2205

}
+ o(Rε−2) , (4.8a)

M−2H 0i
(M2Mpq)

= N̂iab

R

∫ +∞
0

dτ M(5)
ab (TR − τ)

{
− 74

105 ln

(
τ

2r0

)
− 716

1225

}

+ Na
R

∫ +∞
0

dτ M(5)
ai (TR − τ)

{
−4 ln2

(
τ

2r0

)
+ 146

75 ln

(
τ

2r0

)
− 22 724

7875

}
+ o

(
Rε−2

)
, (4.8b)
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M−2H
ij

(M2Mpq)
= N̂ijab

R

∫ +∞
0

dτ M(5)
ab (TR − τ)

{
− ln

(
τ

2r0

)
− 191

210

}
+ δijNab

R

∫ +∞
0

dτ M(5)
ab (TR − τ)

{
− 16

3 ln

(
τ

2r0

)
− 296

35

}

+ N̂a(i
R

∫ +∞
0

dτ M(5)
j)a (TR − τ)

{
52
5 ln

(
τ

2r0

)
+ 8812

525

}
+ 1

R

∫ +∞
0

dτ M(5)
ij (TR − τ)

{
−4 ln2

(
τ

2r0

)
+ 4

15 ln

(
τ

2r0

)
− 198

35

}
+ o

(
Rε−2

)
. (4.8c)

The retarded time is denoted byTR = T − R and the direction to the observer by
Na = Na = Xa/R. Note that

KνH
µν

(M2Mpq)
= o

(
Rε−2

)
, (4.9)

whereKν = (−1, Ni) is the Minkowskian null direction to the observer.
From the radiative metric (4.8) we extract the ‘observable’ multipole moments which

are the quantities measured by an observer located at infinity. The observable multipole
momentsUL andVL parametrize the algebraic transverse–tracefree (TT) projection of the
spatial metric in radiative coordinates,

(H ij )TT = − 4

R
Pijab

∞∑
`=2

1

`!

{
NL−2UijL−2(TR)− 2`

`+ 1
NaL−2εab(iVj)bL−2(TR)

}
+O

(
1

R2

)
,

(4.10)

where the TT projection operator is

Pijab(N ) = (δia −NiNa)(δjb −NjNb)− 1
2(δij −NiNj )(δab −NaNb) . (4.11)

(As we use the field variableHij instead of the covariant metric, (4.10) differs by a sign
from (5.1) in paper I.) The momentsUL andVL agree at the linearized order with the`th
time derivatives of the momentsML andSL [14].

Working out the TT projection and comparing the result with (4.10), we readily find that
the monopole–monopole–quadrupole metric (4.8) contributes to thequadrupoleobservable
momentUij , and only to this moment, by the expression

δUij (TR) = 2M2
∫ +∞

0
dτ M(5)

ij (TR − τ)
{

ln2

(
τ

2r0

)
+ 57

70 ln

(
τ

2r0

)
+ 124 627

44 100

}
. (4.12)

We add back the necessary powers ofG and 1/c (recall thatδUij has the dimension of
(mass)(length)2(time)−2), and find that the term (4.12) carries in front a factorG2/c6, and
therefore represents a small modification of the lowest-order quadrupole radiation at the level
of the third post-Newtonian (3PN) order. Let us prove that there is no other contribution
to Uij at this level. We know from dimensional arguments that a nonlinear term inUij
involves necessarily a factor 1/c3(n−1)+6`i+s−2, wheren > 2 is the order of nonlinearity,
6`i is the sum of multipolarities of then momentsML and/orSL composing the term
(1 6 i 6 n), ands is the number of current-type momentsSL (see for instance section V
in [35]). Furthermore,6`i + s − 2 = 2k wherek is the number of contractions of indices
among all the indices carried by the moments. For a term at the 3PN order we thus have
3(n− 1)+ 2k = 6, which has the unique solutionn = 3 (cubic interaction) andk = 0 (no
contraction of indices). Then the multipolarities satisfy`1 + `2 + `3 + s − 2 = 0, so we
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have necessarily(`1, `2, `3) = (0, 0, 2) and s = 0, which corresponds indeed to the sole
interactionM2×Mij .

Equation (5.10) of paper I gives the observable quadrupole momentUij including all
terms up to the 2.5PN order. Therefore, by the previous reasoning, we can simply add to
(5.10) of paper I the contribution of tails of tails at 3PN order and obtain the completeUij
to the 3PN order. We have

Uij (TR) = M(2)
ij + 2

GM

c3

∫ +∞
0

dτ M(4)
ij (TR − τ)

[
ln

(
cτ

2r0

)
+ 11

12

]

+ G
c5

{
− 2

7

∫ +∞
0

dτ
[
M
(3)
a〈iM

(3)
j〉a
]
(TR − τ)− 2

7M
(3)
a〈iM

(2)
j〉a

− 5
7M

(4)
a〈iM

(1)
j〉a + 1

7M
(5)
a〈iMj〉a + 1

3εab〈iM
(4)
j〉aSb

}

+ 2

(
GM

c3

)2 ∫ +∞
0

dτ M(5)
ij (TR − τ)

[
ln2

(
cτ

2r0

)
+ 57

70 ln

(
cτ

2r0

)
+ 124 627

44 100

]

+O

(
1

c7

)
. (4.13)

The various terms are: at 1.5PN order, the dominant tail integral [32]; at 2.5PN order, the
quadrupole–quadrupole terms (including, in particular, a non-local (memory) integral) and
a quadrupole–dipole term (see paper I and references therein); and, at 3PN order, the tail
of tail integral computed in this paper. The formula (4.13) constitutes the main result of
this paper, as it gives all the physical effects in the radiation field measured by a far away
detector up to the 3PN order.

Note thatUij , when expressed in terms of the intermediate momentsML and SL as
in (4.13), shows a dependence on the (arbitrary) length scaler0. Most of this dependence
comes from our definition (4.6) of a radiative coordinate system, and thus can be removed
by insertingTR = t − r/c − (2GM/c3) ln(r/r0) back into (4.13), and expanding the result
when c → ∞, t − r/c = constant, keeping the necessary terms consistently. In doing so,
one finds that there remains ar0-dependent term at 3PN order, namely

Uij = M(2)
ij − 214

105 ln

(
r

r0

)(
GM

c3

)2

M
(4)
ij + terms independent ofr0 . (4.14a)

This term results simply from our use of ther0-dependent formulae (3.4) and (3.11) in
constructing the harmonic-coordinates metric. As we see from (4.14a), the dependence of
Uij on r0 (or ratherr0/c) is through the effective quadrupole moment

Meff
ij = Mij + 214

105 ln

(
r0

c

)(
GM

c3

)2

M
(2)
ij . (4.14b)

This moment is exactly the one which appears in the near-zone expansion of the external
metric, when taking into account the appearance of the dominant logarithm ofc arising at
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the 3PN approximation. See the discussion in the appendix of [29]. The appearance of this
ln c was pointed out by Andersonet al [43].

4.3. The energy flux

We now investigate the total energy flux generated by the isolated source (its total
gravitationalluminosity), and especially the non-local contributions therein. From (4.10),
the luminosity in terms of the observable moments reads

L =
+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
U
(1)
L U

(1)
L +

4`(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!c2
V
(1)
L V

(1)
L

}
.

(4.15)

The powers of 1/c show, notably, that the momentsUL andVL of higher multipolarities̀
contribute to higher orders in the post-Newtonian expansion ofL.

Let us gather the available information on non-local effects present in theUL’s and
VL’s. Rather, we consider the time-derivatives of the moments (U

(1)
L and V (1)L ), because

these are the quantities of interest in (4.15). From (4.13) we write the time-derivative of
the quadrupoleUij as

U
(1)
ij = M(3)

ij + 2
GM

c3

∫ +∞
0

dτ M(5)
ij

[
ln

(
cτ

2r0

)
+ 11

12

]
+ 1

c5

{
instantaneous termsMa〈iMj〉a, andεab〈iMj〉aSb

}
+ 2

(
GM

c3

)2 ∫ +∞
0

dτ M(6)
ij

[
ln2

(
cτ

2r0

)
+ 57

70 ln

(
cτ

2r0

)
+ 124 627

44 100

]
+ 1

c7

{
instantaneous termsMab〈iMj〉ab,MabMijab, andεab〈iMj〉acSbc

}
+O

(
1

c8

)
, (4.16)

where we indicate only the indexstructure of the local (instantaneous) terms, but writein
extensoall the non-local integrals. Note the important fact that the non-local (memory)
integral present inUij at the 2.5PN order is a mere time anti-derivative (see (4.13)), and
therefore becomes instantaneous when considering the time derivative. We have added with
respect to (4.13) the information that the 3.5PN term is instantaneous, exactly like the 2.5PN
term. This follows from the dimensional argument used before. The 3.5PN term is such
that 3(n − 1) + 2k = 7, thereforen = 2 andk = 2. Now we know [32] that the only
non-local integrals at the quadratic ordern = 2 are the tail integral, which is purely of
order 1.5PN, and the memory integral, which contributes to the 2.5PN, 3.5PN and higher
orders but is in the form of a simple time anti-derivative of an instantaneous functional of
the momentsML andSL. This proves that the 3.5PN term in (4.16) is indeed instantaneous.
Furthermore, its multipole structure follows from̀1 + `2 + s − 2 = 2k = 4. Note that the
instantaneous terms in (4.16) (and other equations below) are instantaneous functionals not
only of the momentsML andSL but also of the real source variables, i.e. whenML andSL
are replaced by their explicit expressions as integrals over the source. Indeed the non-local
integrals inML andSL are not expected to arise before the 4PN order.
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Similarly, we write the relevant higher-order multipole moments, but for them we need
less accuracy than for the quadrupole. The results are

U
(1)
ijk = M(4)

ijk + 2
GM

c3

∫ +∞
0

dτ M(6)
ijk

[
ln

(
cτ

2r0

)
+ 97

60

]

+ 1

c5

{
instantaneous termsMa〈ijMk〉a , εab〈iMjk〉aSb ,

andεab〈iMjaSk〉b
}+O

(
1

c6

)
, (4.17a)

V
(1)
ij = S(3)ij + 2

GM

c3

∫ +∞
0

dτ S(5)ij

[
ln

(
cτ

2r0

)
+ 7

6

]

+ 1

c5

{
instantaneous termsMa〈iSj〉a, MaijSa, εab〈iMj〉acMbc ,

andεab〈iSj〉aSb
}+O

(
1

c6

)
, (4.17b)

U
(1)
ijkl = M(5)

ijkl +
G

c3

{
2M

∫ +∞
0

dτ M(7)
ijkl

[
ln

(
cτ

2r0

)
+ 59

30

]

+ instantaneous termsM〈ijMkl〉

}
+O

(
1

c4

)
, (4.17c)

V
(1)
ijk = S(4)ijk +

G

c3

{
2M

∫ +∞
0

dτ S(6)ijk

[
ln

(
cτ

2r0

)
+ 5

3

]

+ instantaneous termsM〈ij Sk〉, andεab〈iMjaMk〉b

}
+O

(
1

c4

)
. (4.17d)

(The tails in the mass octupole and current quadrupole are from (5.8) in [35]. The mass
24-pole and current octupole are computed (including all the instantaneous terms) in (5.11)
and (5.12) of paper I.)

The separation made in the moments (4.16), (4.17) between instantaneous and non-local
terms yields a similar separation in the energy flux given by (4.15). Furthermore, we
introduce in the non-local part ofL a separation between the tail terms, strictly speaking, a
term involving the square of the tail, and the tail of tail term. Accordingly, we write

L = Linst+ Ltail + L(tail)2 + Ltail(tail) . (4.18)

Quite evidently, we include in the tail part of the flux,Ltail, all the terms which are made
of the cross products of the momentsML andSL and of the corresponding tail integrals at
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1.5PN order. From (4.15)–(4.17) we obtain, neglecting terms at the 4PN order,

Ltail = 4G2M

c5

{
1

5c3
M
(3)
ij

∫ +∞
0

dτ M(5)
ij (TR − τ)

[
ln

(
cτ

2r0

)
+ 11

12

]
+ 1

189c5
M
(4)
ijk

∫ +∞
0

dτ M(6)
ijk (TR − τ)

[
ln

(
cτ

2r0

)
+ 97

60

]
+ 16

45c5
S
(3)
ij

∫ +∞
0

dτ S(5)ij (TR − τ)
[

ln

(
cτ

2r0

)
+ 7

6

]
+ 1

9072c7
M
(5)
ijkl

∫ +∞
0

dτ M(7)
ijkl(TR − τ)

[
ln

(
cτ

2r0

)
+ 59

30

]
+ 1

84c7
S
(4)
ijk

∫ +∞
0

dτ S(6)ijk(TR − τ)
[

ln

(
cτ

2r0

)
+ 5

3

]
+O

(
1

c8

)}
. (4.19)

The moments in front of each integral depend on the current timeTR. (For convenience
we include in (4.19) the terms associated with the constants11

12, 97
60, etc, though these terms

are actually instantaneous. In fact these terms are given by some total time derivatives and
thus do not participate in the loss of energy in the source. In the case of binary systems
moving on circular orbits, these terms are rigorously zero (see section 5).) The expression
(4.19) generalizes to 3.5PN order the expression (5.12) of [35].

Now the ‘(tail)2’ contribution to the flux is given by the square of the tail integral at
1.5PN order, and therefore enters the energy flux at the same 3PN order as the contribution
of tails of tails. In fact this contribution could be treated on the same footing as the ‘tail(tail)’
contribution, but it will be clearer in section 5 to investigate it separately. We have

L(tail)2 =
4G2M

c5

{
GM

5c6

(∫ +∞
0

dτ M(5)
ij (TR − τ)

[
ln

(
cτ

2r0

)
+ 11

12

])2

+O

(
1

c10

)}
. (4.20)

Physically, (4.20) represents the energy flux due to the tail part of the wave, in situations
where the tail can be separated from the other components of the field. In particular, after
the passage of a burst of gravitational radiation (defined by the constancy of the quadrupole
momentMij before and after a certain interval of time), the wave tail will be solely present
in the radiation field, and therefore the total energy fluxL will reduce in this case toL(tail)2.

Next, the ‘tail(tail)’ contribution to the flux involves the cross product of the quadrupole
moment and the tail of tail integral at 3PN order. It reads (neglecting 4PN-order terms)

Ltail(tail) = 4G2M

c5

{
GM

5c6
M
(3)
ij

∫ +∞
0

dτ M(6)
ij (TR − τ)

×
[

ln2

(
cτ

2r0

)
+ 57

70 ln

(
cτ

2r0

)
+ 124 627

44 100

]
+O

(
1

c8

)}
. (4.21)

Note that in contrast to (4.19) the instantaneous terms associated with the constants11
12 and

124 627
44 100 in (4.20) and (4.21) do contribute to the energy flux, even in the case of binary

systems moving on circular orbits (see section 5).
Finally, the instantaneous part of the flux,Linst, is entirely defined, up to the 3.5PN

order included, by the general formula (4.15) together with the previous definitions ofLtail,
L(tail)2 andLtail(tail). We do not write the full expression ofLinst in terms ofML and SL
because we do not consider it in the application to compact binaries in section 5. It suffices
for our purpose to recall thatLinst is not only instantaneous in terms of the momentsML and
SL, but also is instantaneous in terms of the real source parameters (neglecting 4PN-order
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terms), that is, in the case of compact binaries, of the orbital separation and relative velocity
of the two bodies.

5. Application to in-spiralling compact binaries

Last but not least, we specialize the results to binary systems of compact objects (neutron
stars or black holes). These systems, when the two objects spiral very rapidly toward
each other in the phase just prior to the final coalescence (the orbital motion is highly
relativistic in this phase), constitute the most interesting known source of gravitational
waves to be observed by VIRGO and LIGO. The rate of in-spiral is fixed by the total
energy in the gravitational waves generated by the orbital motion, that is by the binary’s
total gravitational luminosityL, which is therefore a crucial quantity to predict. We assume
two non-spinning point masses (without internal structure) moving on an orbit which has
evolved for a sufficiently long time to have been circularized by the radiation reaction forces.
For such (excellent) modelling of in-spiralling compact binaries we computeLtail, L(tail)2

andLtail(tail) to the 3.5PN order included.
To compute the tail part (given by (4.19)), we need the expressions of the multipole

moments for circular compact binaries, to 2PN order for the mass quadrupole momentMij ,
1PN order for the mass octupoleMijk and current quadrupoleSij , and Newtonian order for
Mijkl and Sijk. These moments have been calculated in [44], and we simply report here
their expressions:

Mij = νm
{
x〈ij〉

[
1− γ

42
(1+ 39ν)− γ 2

1512
(461+ 18 395ν + 241ν2)

]

+ r
2

c2
v〈ij〉

[
11
21(1− 3ν)+ γ

378
(1607− 1681ν + 229ν2)

]
+O

(
1

c5

)}
, (5.1a)

Mijk = −νδm
{
x〈ijk〉(1− γ ν)+ r

2

c2
v〈ij xk〉(1− 2ν)+O

(
1

c4

)}
, (5.1b)

Sij = −νδm εab〈ixj〉avb
[

1+ γ

28
(67− 8ν)+O

(
1

c4

)]
, (5.1c)

Mijkl = νmx〈ijkl〉(1− 3ν)+O

(
1

c2

)
, (5.1d)

Sijk = νm εab〈ixjk〉avb(1− 3ν)+O

(
1

c2

)
. (5.1e)

The mass parameters are the total massm = m1 + m2 (m = M in the notation of the
previous sections), the mass differenceδm = m1 − m2, and the mass ratioν = m1m2/m

2

(satisfying 0< ν 6 1
4). The relative position and velocity of the two point masses are

denoted byxi = yi1− yi2 andvi = dxi/dt . We use the post-Newtonian parameter

γ = Gm

rc2
, r = |x| (5.2)

(r is the harmonic-coordinates’ distance between the two bodies). The time derivatives of
the multipole moments (5.1) are computed using the equations of motion, with maximal
2PN precision needed for the time derivatives of the quadrupole moment. The equations of
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motion are

dvi

dt
= −ω2

2PNx
i +O

(
1

c5

)
, (5.3a)

ω2
2PN=

Gm

r3

[
1+ (−3+ ν)γ + (6+ 41

4 ν + ν2
)
γ 2
]
, (5.3b)

where the frequencyω2PN is the orbital frequency of the exact circular periodic motion
at the 2PN order (see [44]). Introducing, instead ofγ , the post-Newtonian parameter
x = (Gmω2PN/c

3)2/3, we have

γ = x {1+ (1− 1
3ν
)
x + (1− 65

12ν
)
x2+O

(
x3
)}
. (5.3c)

The computation ofLtail proceeds as in section VI.B of [35]. Namely, we insert into
(4.19) the time derivatives of the moments (5.1), evaluated both at the current timeTR
and at all anterior timesTR − τ . Then we work out all contractions of indices and obtain
many integrals of logarithms ofcτ/2r1, wherer1 is some constant such asr1 = r0e−11/12,
multiplied by cosines of some multiples (n) of ω2PNτ . All these integrals are computed
using the mathematical formula∫ +∞

0
dy ln y e−λy = −1

λ
(C + ln λ) , (5.4)

whereλ denotes the complex numberλ = 2inω2PNr1/c, and whereC = 0.577. . . is the
Euler constant (see, e.g., [45] p 573). See appendix A of [30] for the proof that this formula
yields the correct result for in-spiralling compact binaries modulo some error terms of
order O(c−5 ln c), falling in the present case into the uncontrolled remainder of (4.19). In
fact we need only the real part of (5.4) for the computation ofLtail, which leads (using
ln(iω) = lnω + iπ/2) to a term proportional toπ and independent ofr1. The result
(extending the equation (6.18) in [33]) is

Ltail = 32c5

5G
ν2γ 5

{
4πγ 3/2− ( 25 663

672 + 109
8 ν
)
πγ 5/2

+ ( 90 205
576 + 3772 673

12 096 ν + 32 147
3024 ν

2
)
πγ 7/2+O(γ 4)

}
, (5.5a)

or, equivalently, in terms of the parameterx,

Ltail = 32c5

5G
ν2x5

{
4πx3/2− ( 8191

672 + 535
24 ν

)
πx5/2

+ (− 16 285
504 + 176 419

1512 ν + 19 897
378 ν

2
)
πx7/2+O(x4)

}
. (5.5b)

The tails contribute only to thehalf-integer post-Newtonian approximations 1.5PN, 2.5PN,
and 3.5PN. Now, we know that only the terms given by somenon-local integrals
can contribute to the half-integer post-Newtonian approximations. This follows from
an argument presented in section VI B of [33], which shows that the terms given by
instantaneous functionals of the binary’s relative position and velocity are zero for half-
integer approximations in the energy flux for circular orbits (but only in this case). Thus we
conclude that the terms computed in (5.5a) and (5.5b) represent thecomplete1.5PN, 2.5PN
and 3.5PN approximations inL—no other contributions can come fromLinst to these orders
(andL(tail)2 andLtail(tail) are purely of 3PN order). Being complete, these approximations
can thus be compared, in the test-mass limitν → 0 for one body, with the result of black-
hole perturbation theory derived up to 4PN order by Tagoshi and Sasaki [48]. For the
comparison we must use (5.5b) expressed in a coordinate-independent way by means of the
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parameterx. We find that there is perfect agreement, in the limitν → 0, between (5.5b)
and the corresponding terms in equation (43) of [48] (see also equation (3.1) of [49]).

Turn now toL(tail)2 defined by (4.20). The computation is essentially the same as for
Ltail, but since we are considering a small 3PN effect, the expression of the quadrupole
moment at the Newtonian order is sufficient. Consistently, we use the Newtonian equations
of motion (with orbital frequencyω2 = Gm/r3). Using the mathematical formula (5.4), in
which both the real and imaginary parts are now needed, we readily obtain

L(tail)2 =
32c5

5G
ν2γ 5

{(
16

[
C + ln

(
4ωr0
c

)]2

− 88
3

[
C + ln

(
4ωr0
c

)]
+ 4π2+ 121

9

)
γ 3+O(γ 4)

}
. (5.6)

Finally, we computeLtail(tail) as given by (4.21). Again we need only the Newtonian
quadrupole moment and Newtonian equations of motion, however a new ingredient is
necessary, which is a mathematical formula analogous to (5.4) but able to deal with the
squareof the logarithm. From [45] p 574, the relevant formula is∫ +∞

0
dy ln2 y e−λy = 1

λ

[
1
6π

2+ (C + ln λ)2
]
. (5.7)

Using this formula for in-spiralling compact binaries is justified in the same way as for the
earlier formula (5.4). As a result we get

Ltail(tail) = 32c5

5G
ν2γ 5

{(
− 16

[
C + ln

(
4ωr0
c

)]2

+ 456
35

[
C + ln

(
4ωr0
c

)]
+ 4

3π
2− 498 508

11 025

)
γ 3+O(γ 4)

}
. (5.8)

Both L(tail)2 andLtail(tail) have the same structure, namely that of a polynomial of the
second degree in the combinationC+ ln(4ωr0/c). However, we see that the coefficients in
front of the square ofC+ln(4ωr0/c) in (5.6) and (5.8) are exactly opposite, and therefore that
the sum ofL(tail)2 andLtail(tail) is actually merely linear in the combinationC + ln(4ωr0/c).
This fact is somewhat surprising because the terms involving the square of lnω area priori
allowed. Thus, to the 3PN order, the terms(lnω)2 cancel out and there remains simply a
term with lnω (and the associated lnc). The appearance of a lnω at 3PN was first shown
in this context by Tagoshi and Nakamura [39]. Recall that the general structure of the
post-Newtonian expansion of the near-zone metric involves, besides the regular powers of
1/c, some arbitrary powers of lnc [16]. Similarly, one expects that the general structure
of L should involve, when going to higher post-Newtonian approximations, some arbitrary
powers of lnω. (Note that up to the 5.5PN orderL as computed in the limitν → 0 by
Tanakaet al [49] is still linear in lnω.)

Adding up (5.6) and (5.8), we obtain

L(tail)2+tail(tail) =
32c5

5G
ν2γ 5

{(
− 1712

105

[
C + ln

(
4ωr0
c

)]
+ 16

3 π
2− 116 761

3675

)
γ 3+O(γ 4)

}
.

(5.9)

It is not yet possible to compare this result whenν → 0 with the one obtained using
perturbation theory. Indeed, (5.9) represents only a part of the complete 3PN term inL,
which should also take into account the (hard to get) 3PN contributions inLinst, which are
due to the 3PN relativistic corrections in the quadrupole moment (5.1a) and in the equations
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of motion (5.3). (The 3PN contributions inLinst are in progress [54, 55].) Nevertheless, we
already recognize in (5.9) the same terms withπ2 and the combinationC + ln(4ω) as in
the result of Tagoshi and Sasaki [48]. (To this order one can replace in (5.9) the parameter
γ by x.)

The 3PN term obtained in (5.9) depends on the arbitrary length scaler0. This is not a
problem because the 3PN term inLinst is expected also to depend onr0 through the explicit
expression of the intermediate quadrupole momentMij as a functional of the source’s stress–
energy tensor. Ther0-dependent terms in bothL(tail)2+tail(tail) andLinst should cancel out, so
that the physical energy fluxL is indeed independent ofr0. We leave for future work [54]
the check of the latter assertion.
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Appendix A. Formulae required to compute the cubic nonlinearities

In this appendix we compute the finite part of the retarded integral of a source term with
multipolarity `, radial dependence withk > 1, and containing a non-local integral whose
kernel is a certain Legendre functionQm(x) (see (2.9)). Thus,

k,m9L = FPB=0�−1
R

[
(r/r0)

Bn̂Lr
−k
∫ +∞

1
dx Qm(x)F (t − rx)

]
. (A.1)

We tackle first the casek = 1. It can be checked in this case that whenr → 0 the
source behaves in such a way that the retarded integral (in its usual triple integral form) is
convergent, so we can forget about the finite-part procedure. For the present computation
it is convenient to use formula (D5) of appendix D in [16], which gives

1,m9L = − n̂L
2r

∫ t−r

−∞
dξ
∫ (t+r−ξ)/2

(t−r−ξ)/2
dw

∫ +∞
1

dx Qm(x)F (ξ − (x − 1)w)

× P`
(

1− (t − r − ξ) (t + r − ξ − 2w)

2rw

)
, (A.2)

whereP` denotes the Legendre polynomial. Changing the variables(ξ, w) to the new
variables(y, z) defined byξ−(x−1)w = t−ry andz = 1−(t−r−ξ)(t+r−ξ−2w)/2rw,
we obtain

1,m9L = − rn̂L
2

∫ +∞
1

dx

x2− 1
Qm(x)

∫ +∞
1

dy F(t − ry)
∫ 1

−1
dz P`(z)

×
[

xy − z√
(xy − z)2− (x2− 1)(y2− 1)

− 1

]
. (A.3)

Next we integrate by parts they-integral, introducing the anti-derivativeF (−1) of F . After
some manipulation, we get

1,m9L = n̂L

2

∫ +∞
1

dy F (−1)(t − ry)
∫ +∞

1
dx Qm(x)

× d

dx

[ ∫ 1

−1

dz P`(z)√
(xy − z)2− (x2− 1)(y2− 1)

]
. (A.4)
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The z-integration can be performed explicitly thanks to the rather interesting mathematical
formula

1
2

∫ 1

−1

dz P`(z)√
(xy − z)2− (x2− 1)(y2− 1)

=
{
P`(x)Q`(y) (1< x 6 y) ,
P`(y)Q`(x) (1< y 6 x) .

(A.5)

As this formula does not seem to appear in standard textbooks of mathematical formulae
such as [45], we present its proof at the end of this appendix.

With (A.5) we obtain

1,m9L = n̂L
∫ +∞

1
dy F (−1)(t − ry)

{
Q`(y)

∫ y

1
dx Qm(x)

dP`
dx
(x)

+ P`(y)
∫ +∞
y

dx Qm(x)
dQ`

dx
(x)

}
. (A.6)

The leading-order term at infinity (r →∞, t − r = constant) comes from the second term
in the brackets, and we have

1,m9L = n̂L

r

∫ +∞
0

dτ F (−1)(t − r − τ)
∫ +∞

1+τ/r
dx Qm(x)

dQ`

dx
(x)+ o

(
rε−2

)
(A.7)

(see the notation concerning the remainder in section 3.2). In the case` = m (the only one
needed in this paper), thex-integral is obtained in closed form, and we obtain

1,`9L = − n̂L
2r

∫ +∞
0

dτ F (−1)(t − r − τ)
[
Q`

(
1+ τ

r

)]2

+ o
(
rε−2

)
. (A.8)

Using the expansion (2.9c) of the Legendre function, we further obtain

1,`9L = − n̂L
8r

∫ +∞
0

dτ F (−1)(t − r − τ)

×
[

ln2

(
τ

2r

)
+ 4

(∑̀
j=1

1

j

)
ln

(
τ

2r

)
+ 4

(∑̀
j=1

1

j

)2 ]
+ o

(
rε−2

)
. (A.9)

This is the formula used in section 3.2.
Consider now the casek > 2, and restrict attention to the leading-order term at infinity.

In this case one uses lemma 7.2 in [16], whose hypothesis is satisfied withN = k−ε > 2−ε.
Thus the 1/r term in k,m9L, which is deduced from (7.2) and (7.6) in [16], is

k,m9L = (−1)`

`!

n̂L

r
G(`)(u)+ o

(
rε−2

)
, (A.10)

whereu = t − r and

G(u) = FPB=0

∫ u

−∞
ds RB+∞

(
u− s

2
, s

)
, (A.11a)

RB+∞(ρ, s) = −ρ`
∫ +∞
ρ

dy
(ρ − y)`
`!

(
2

y

)`−1(
y

r0

)B
y−k

×
∫ +∞

1
dx Qm(x)F (s − (x − 1)y) . (A.11b)
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By combining together these expressions, and introducing the variablez = 1− (u− s)/y,
we get

G(u) = − 1

2`+1
FPB=0

∫ +∞
1

dx Qm(x)

∫ +∞
0

dy

(
y

r0

)B
y−k+`+2

×
∫ 1

−1
dz (z2− 1)`F (u− (x − z)y) . (A.12)

This expression is still not suitable for practical computations, and we must integrate by
parts they-integral in order to determine the finite part atB = 0. The all-integrated terms
during the integrations by parts are zero by analytic continuation inB. We must distinguish
two cases, 26 k 6 `+ 2 andk > `+ 3.

When 26 k 6 `+2 we obtain after̀ +2− k integrations by parts the local expression

(−1)`

`!
G(`)(u) = − k,mα` F

(k−3)(u) , (A.13)

where the coefficientk,mα` reads

k,mα` = (`− k + 2)!

2`+1`!

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz

(1− z2)`

(x − z)`−k+3
. (A.14)

A more elegant form of this coefficient is obtained by using the representation of the
Legendre function given by

Q`(x) = 1

2`+1

∫ 1

−1
dz

(1− z2)`

(x − z)`+1
(A.15)

(which is equivalent to the other formulae (2.9), see, e.g., [50]). Thenk,mα` reads

k,mα` =
∫ +∞

1
dx Qm(x)

∫ +∞
x

dz
(z − x)k−3

(k − 3)!
Q`(z) . (A.16)

The numerical values of the coefficient are computed from

k,mα` =
k−2∑
i=0

(−1)i(k − 2)!

i!(k − i − 2)!

(2`− 2k + 3+ 2i)!!

(2`+ 1+ 2i)!!

× (2`− 2k + 5+ 4i)
∫ +∞

1
dx Qm(x)Q`−k+2+2i (x) , (A.17)

where the remaining integrals are given by (see, e.g., [45])

∫ +∞
1

dx Qm(x)Qp(x) =



1

(m− p)(m+ p + 1)

[ m∑
j=1

1

j
−

p∑
j=1

1

j

]
(m 6= p) ,

1

2p + 1

[
π2

6
−

p∑
j=1

1

j2

]
(m = p) .

(A.18)

We thus obtain the coefficients reported in tables 1 and 2 of section 3.
In the casek > `+3, we get afterk−`−2 integrations by parts the non-local expression

(−1)`

`!
G(`)(u) = −

∫ +∞
0

dτ F (k−2)(u− τ)
[
k,mβ` ln

(
τ

2r0

)
+ k,mγ`

]
, (A.19)
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where the coefficientsk,mβ` and k,mγ` are given by

k,mβ` = 1

2`+1`!(k − `− 3)!

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz (1− z2)`(z − x)k−`−3 , (A.20a)

k,mγ` = 1

2`+1`!(k − `− 3)!

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz (1− z2)`(z − x)k−`−3

×
[
− ln

(
x − z

2

)
+

k−`−3∑
j=1

1

j

]
. (A.20b)

More elegant forms are

k,mβ` = 1
2

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz
(z − x)k−3

(k − 3)!
P`(z) , (A.21a)

k,mγ` = 1
2

∫ +∞
1

dx Qm(x)

∫ 1

−1
dz
(z − x)k−3

(k − 3)!
P`(z)

[
− ln

(
x − z

2

)
+

k−3∑
j=1

1

j

]
. (A.21b)

The casesk = 3 and` = 0 needed in this paper yield

3,mβ0 =
∫ +∞

1
dx Qm(x) = 1

m(m+ 1)
(m > 1) , (A.22a)

3,mγ0 = −
∫ +∞

1
dx Qm(x)

[
ln
(

1
2

√
x2− 1

)
+Q1(x)

]
. (A.22b)

Finally, the formula (7.132.3) in [45] where, however, a factor 22λ−µ in the denominator
should be corrected to a factor 22−µ, leads to

3,mγ0 =


− 1

18π
2+ 7

12 (m = 1) ,

1

m(m+ 1)(m+ 2)

(
m2+ 3m+ 3

m+ 1
− 2

m− 1

m−1∑
j=1

1

j

)
(m > 2) .

(A.22c)

Whenm = 2 we find the values (3.13).

Proof of the mathematical formula (A.5).The author proved this formula by: (i) verifying
that the left-hand side of the formula, namely

I`(x, y) ≡ 1
2

∫ 1

−1

dz P`(z)√
(xy − z)2− (x2− 1)(y2− 1)

, (A.23)

is a particular solution of the Legendre equation both in variablesx andy; and (ii) showing
that this particular solutionI`(x, y) is necessarily equal to the solution given by the right-
hand side. To prove (ii) one must invoke the behaviour of the Legendre function at infinity,
which isQ`(x) ≈ 1/x`+1 whenx →∞.

A direct and more explicit proof of this formula was then found by H Sivak. This
proof consists first of transformingI`(x, y) by means of formula (3.613.1) in Gradshteyn
and Ryzhik [45], in order to obtain

I`(x, y) = 1

2π

∫ π

0
dt
∫ 1

−1

dz P`(z)

xy − z −
√
(x2− 1)(y2− 1) cost

. (A.24)
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With the help of Neumann’s formula (2.9a) for the Legendre function, we get

I`(x, y) = 1

π

∫ π

0
dt Q`

(
xy −

√
(x2− 1)(y2− 1) cost

)
. (A.25)

Using now formula (8.795.2) of [45], we find (assuming for instance thatx < y)

I`(x, y) = 1

π

∫ π

0
dt

{
P`(x)Q`(y)+ 2

+∞∑
k=1

(−1)kP−k` (x)Qk
`(y) coskt

}
. (A.26)

This yields immediately the desired result

I`(x, y) = P`(x)Q`(y) . (A.27)

Appendix B. The harmonicity algorithm in the far zone

The harmonicity algorithm is a method for adding to the retarded integral of the source,

uαβ = FPB=0�−1
R

[(
r

r0

)B
3αβ

]
, (B.1)

a homogeneous solutionvαβ of the wave equation, which is such that the sumuαβ + vαβ is
divergence free (and thus satisfies the harmonic-gauge condition). A particular algorithm is
defined by (4.12), (4.13) in [16]; a slightly different one by (2.11), (2.12) in paper I. Here
we follow paper I.

The harmonicity algorithm to order 1/r whenr →∞, t − r = constant, is as follows.
The 1/r term of the divergence ofuαβ ,

∂βu
αβ = 1

r
Uα(n, t − r)+O

(
1

r2

)
, (B.2)

is decomposed into multipole moments according to

U0 =
∑
`>0

nLWL , (B.3a)

Ui =
∑
`>0

niLXL +
∑
`>1

{
nL−1YiL−1+ εiabnaL−1ZbL−1

}
. (B.3b)

Comparing this decomposition with the definition (2.11) in paper I, we obtain some relations
between the tensorsWL, XL, etc, and the time-derivatives of the tensorsAL, BL, etc, in
this definition. Next we obtain the 1/r term of vαβ ,

vαβ = 1

r
V αβ(n, t − r)+O

(
1

r2

)
, (B.4)

by applying formula (2.12) in paper I. Re-expressing the decomposition in terms of the
tensorsWL, XL, etc, we obtain some formulae for the time derivative ofV αβ ,

dV 00

dt
= −W − na [Wa + Ya − 3Xa] , (B.5a)

dV 0i

dt
= −Yi + 3Xi − εiabnaZb +

∑
`>2

nL−1WiL−1 , (B.5b)

dV ij

dt
= δijX +

∑
`>2

{−2δijnL−1XL−1+ 6nL−2(iXj)L−2

+ nL−2
[
WijL−2− 3XijL−2+ YijL−2

]+ 2naL−2εab(iZj)bL−2
}
. (B.5c)

These are the formulae needed in section 4.1.
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