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Abstract. This paper investigates the nonlinear self-interaction of quadrupole gravitational
waves generated by an isolated system. The vacuum Einstein field equations are integrated in
the region exterior to the system by means of a post-Minkowskian algorithm. Specializing to
the quadrupole—quadrupole interaction (at the quadratic nonlinear order), we recover the known
results concerning the non-local modification of the ADM mass—energy of the system accounting
for the emission of quadrupole waves, and the non-local memory effect due to the re-radiation
by the stress—energy distribution of linear waves. We then compute all the local (instantaneous)
terms which are associated, in the quadrupole—quadrupole metric, with the latter non-local effects.
Expanding the metric at large distances from the system, we obtain the corresponding radiation-
field observables, including all non-local and transient contributions. This permits, notably, the
completion of the observable quadrupole moment atgtrm)st-Newtonian order.

PACS numbers: 0425N, 0430D

1. Introduction

In general relativity, the multipole moments of any finite distribution of energy and
momentum interact with each other in vacuum, through the nonlinearities in the field
equations. In particular, the multipole moments which describe the gravitational waves
emitted by an isolated system do not evolve independently, but rather couple together
(including to themselves), giving rise to nonlinear physical effects.

The simplest multipole interaction which contributes to the radiation field is that between
the (mass-type) quadrupole momewi; and the mass monopol®. The latter moment
is the constant mass—energy of the source as measured at spatial infinity (ADM mass).
Associated with the multipole interactiodl;; x M is the nonlinear effect of tails. This
effect is due to the backscatter of linear waves (described/y onto the spacetime
curvature generated by the mass—eneWy The tails can be computed within the theory
of gravitational perturbations of the Schwarzschild background (see, e.g., [1-3]). A
consequence of the existence of tails is the non-locality in time, as the tails are in the
form of integrals depending on the history of the source frewo in the past to the
retarded time — r/c [4-7]. It is known that the tails appear both in the radiation field and
in the radiation reaction forces at t@epost-Newtonian order (1.5PN, or order® when
¢ — 00) relative to the quadrupole radiation [8, 9].

Next in complexity is the interaction of the quadrupole moment with itself, or quadrupole
self-interactionM;; x M. Two closely related non-local (or hereditary) effects are known
for this particular interaction. As shown by Bonnor and collaborators [4, 6, 10, 11], the total
massM is modified by a non-local integral accounting for the energy which is radiated by
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the quadrupole waves (in agreement with the Einstein quadrupole formula). On the other
hand, the radiation field involves a non-local contribution whose physical origin is the re-
emission of waves by the linear waves [12-16, 9]. This contribution can be easily computed
by using as the source of waves in the right-hand side of the Einstein field equations the
effective stress—energy tensor of gravitational waves (averaged over several wavelengths).
As shown by Christodoulou [14] and Thorne [15], this implies a permanent change in the
wave amplitude from before to after a burst of gravitational waves, which can be interpreted
as the contribution of gravitons in the known formulae for the linear memory [17,18]. The
latter nonlinear memory integral appears at the 2.5PN order in the radiation field (1PN order
relative to the tail integral).

Now the metric which corresponds to the quadrupole—quadrupole interaction also
involves, besides the non-local contributions, many terms which, by contrast, depend on
the multipole moments at the sole retarded instantr/c. In the following we shall
often describe these local terms as instantaneous (following the terminology of [8]). The
instantaneous terms in the radiation field (to ordgér)lare transient in the sense that they
return to zero after the passage of a burst of gravitational waves. On physical grounds, it can
be argued that the instantaneous terms do not play a very important role. However, these
terms do exist and form an integral part of the field generated by very relativistic sources like
in-spiralling compact binaries (see, e.g., [19]). In fact, the complete quadrupole—quadrupole
metric including all the hereditary and instantaneous contributions will be needed in the
construction of very accurate theoretical waveforms to be used by the future detectors
LIGO and VIRGO.

The present paper is devoted to the computation of the quadrupole—quadrupole metric,
using the so-called multipolar-post-Minkowskian method proposed by Blanchet and Damour
[20, 21] following previous work by Bonnor [10] (his double-series approximation method)
and Thorne [22] (how to start the post-Minkowskian iteration using STF multipole
moments). The instantaneous quadrupole—quadrupole terms have never been computed
using the multipolar-post-Minkowskian method. However, they have been computed by
Hunter and Rotenberg [6] using the double-series method, in the case where the source is
axisymmetric. The nonlinear interaction between quadrupoles has also received attention
more recently within the double-series method [23].

The main result of this paper (having in mind the application to astrophysical sources to
be detected by VIRGO and LIGO) is the completion of the observable quadrupole moment
of a general isolated source at the 2.5PN order. To reach this result, we also take into
account previous results concerning the tails at the 1.5PN order [9], and the multipole
moments given by explicit integrals over the source to 2.5PN order [24,25]. (Note that
the 2.5PN approximation in the observable quadrupole moment gives no contribution to the
phase evolution of in-spiralling compact binaries [25], however it will be required when we
compute the 2.5PN waveform.)

In a companion paper [26], which we shall refer to as paper Il, we investigate the
monopole—monopole—quadrupole interaction (at the cubic nonlinear order), which enters
the radiation field at the 3PN approximation. The present paper and paper Il are part of the
programme of computing the field generated by in-spiralling compact binaries to 3PN and
even 3.5PN accuracy (see [27-30] for why such a very high accuracy is necessary).

The plan of the paper is as follows. In section 2 we summarize from [20, 21] the method
for computing the field nonlinearities. In section 3 we investigate (following [8]) the general
structure of the quadratic nonlinearities. Section 4 deals with the explicit computation
of the quadrupole—quadrupole metric. The results are presented in the form of tables of
numerical coefficients. Finally, in section 5, we expand the metric at infinity and obtain
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the observable moments in the radiation field (essentially the quadrupole). The technical
formulae for integrating the wave equation are relegated to appendix A, and some required
results concerning the dipole—quadrupole interaction are derived in appendix B. Henceforth
we setc = 1, except when we discuss the post-Newtonian order at the end of section 5.

2. Nonlinearities in the external field

We summarize the method set up in [20] for the computation of the quadratic and higher
nonlinearities in the field generated by an isolated system. The computation is performed
in the exterior (vacuum) weak-field region of the system, where the components of the
gravitational fieldh*” are numerically small as compared to one. Hetfé denotes the
metric deviationi*’ = ,/—g g"’ — "V, with g"¥ the inverse ang the determinant of

the metricg,,, andy*’ the Minkowski metric diag—1, 1, 1, 1). In the exterior weak-field
region the fieldr*’ admits a post-Minkowskian expansion,

W = Ghy" + G?hy" 4+ G"h™ + -+ 2.1

whereG is the Newtonian gravitational constant, which here plays the role of a book-keeping
parameter in the nonlinearity expansion. The first term in (2.1) satisfies the vacuum Einstein
equations linearized around the Minkowski metric. In harmonic (or De Donder) coordinates
this gives two equations,

OA™ =0, (2.23)
aht = 0. (2.20)

In the first equation] denotes the flat spacetime wave (d’Alembertian) operator. The second
equation (divergenceless of the field) is the harmonic gauge condition. The equations (2.2),
supplemented by the condition of retarded potentials, are solved by means of a multipolar
expansion. It is known that only two sets of multipole moments, the mass-type moments
M and current-type momentg (both depending on the retarded time r), are sufficient

to parametrize the general multipole expansion (see, e.g., [22]). In terms of these moments
the general solution reads [22]

(— 1)

hOO

[r Mot —1)], (2.39)

=0

1 —Dte
h = 42 - ) da[r Mt —r)]+4) DL s [rSpr-at — )] .

>1 =1 ¢+ 1)
(2.30)
1
i = —42( ) do[r M ot — )]
>2
_ 82 (=Dt , Z[r_lg b(‘S(l) L — r)] (2.%)
a - ab(iPjpr— . .
L e+ 2

Here the superscriptn) denotesn time derivatives. The index. is a shorthand for
a multi-index composed of indices, L = ijip---i, (Similarly, L — 1 = iyip---i;_1,
al — 2 = aiy---ig_3, and so on), and, denotes a product of space derivatives,
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9, = 0,0, - - - 9;,. The multipole momentd/, and S, are symmetric and tracefree (STF)
with respect to all their indicés

A priori the multipole momentsM; (r) and S, (¢+) are arbitrary functions of time.
Potentially they describe the physics of a general isolated source as seen in its exterior field
[22,20]. The only physical restriction is that the mass monopdlétotal mass—energy or
ADM mass), the mass dipol&f; (position of the centre of mass multiplied by the mass),
and the current dipol§; (total angular momentum) are constant. Technically speaking, this
is a consequence of the harmonic gauge conditionbf2(&ee, e.g., [22]). In this paper
we shall set the mass dipold; to zero by shifting the origin of coordinates to the centre
of mass. In order to describe an isolated system, we must implement a condition of no
incoming radiation, ensuring that the radiation field is entirely generated by the system. We
assume that the field is stationary in the remote past, i.e. that the momMettsand S, (¢)
are constant before some finite instant in the past, say when—7 (henceM; cannot
be a linear function of time and is necessarily constant or zero). This assumption may
seem to be somewhat restrictive, but we can cleglosteriori that the formulae derived
in this paper and paper Il admit a well defined limit whef — —oo in more general
physical situations, such as the formation of the system by initial gravitational scattering.
The multipole momentd/, () and S, (¢), subject to the previous restrictions, play the role
of ‘seed’ moments for the construction of the exterior field (2.1). In particular, we shall
express the results of this paper in terms of producta/gfwith itself. We shall not use
the expressions for the multipole momes and S, as explicit integrals over the source.
However, these expressions are known in the post-Newtonian approximation [24, 25], and
should be used in applications.

The coefficient ofG? in (2.1) is the quadratically nonlinear metric, whose precise
definition we recall. The field equations for this coefficient read, still using harmonic
coordinates,

Ohs = N2 (2.40)
3,hY = 0. (2.4b)

The d’Alembertian equation involves a quadratic SOUNGE = N*’(h1, h1) generated by
the linearized gravitational field (2.3), where

N™ (h,h) = —h"3,0,h"" + 8" h,,0"h" — 33" hd"h
— 20%hpe 3" RV + 3,hP (3 h)) + 3,h"7)

+ 0" = 0uhpe 8" hP7 + §0,h0°h + 58,h6307 ] (2:5)
From (2.4¢) we deduce
9N = 0. (2.6)

Then the quadratic metrig,”, solving (2.4) and the condition of stationarity in the past, is
obtained as the sum of two distinct contributions,

R = Ul 4 ok @2.7)

1 Our notation is the following: signature-+++; Greek indices= 0, 1,2, 3; Latin indices = 1,2, 3;
g = detigu); nuw = " = flat metric = diag(—1,1, 1, 1); r = |z| = Z + x3 +xD)V2 0! = n; = xi/r;
8 =08/0x";nt =np = nini, - -+ nj, anday = 9;,9;, - - - 9;,, whereL = iyip - - - iy iS @ multi-index with¢ indices;
np_1 = iy -+ Njy_y, NaL—1 = Ngnp_1, €tC; ny and éL are the (symmetric) and trace-free (STF) parts:pf
and 9, also denoted by, 9;.); the superscrip{n) denotesn time derivatives;T(qp) = %(Taﬁ + Tg,) and
Tijy = 3(Tyj + Tji)-
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Basically, the first contribution’” is the retarded integral of the sourdg”’. However,
in our case the source is in the form of a multipole expansion (valid only in the exterior of
the system and singular at= 0), so we cannot directly apply the usual retarded integral
operator, whose range of integration intersects the system at retarded time. A way out of
this problem, proposed in [20], consists of multiplying the actual source fé&thby a
factor (r/rg)®, where B is a complex number ang, denotes a certain constant having
the dimension of a length. When the real part®fis large enough, all the power-like
singularities of the multipole expansion at the spatial origin of the coordinates0 are
cancelled. (Actually we consider separately each multipolar piece, with given multipolarity
¢, so that the maximal power of the singularities is finite, ahdan indeed be chosen
in such a way.) Applying the retarded integral on each multipolar piece of the product
(r/ro)® Ny" results in a function of8 whose definition can be analytically continued to a
neighbourhood ofB = 0, at which point it admits a Laurent expansion. The finite part at
B =0 (in short FR—o) of the latter expansion is our looked-for solution, as it satisfies the
correct wave equation{u,” = N5"), and is likeN5" in the form of a multipole expansion.
Note that the latter process represents simply a convenient means to find a solution of the
wave equation whose source is in the form of a multipole expansion. Other processes could
just as well be used, but this one is particularly powerful as it yields many explicit formulae
to be used in practical computations (see appendix A and appendix A of paper Il). Hence
the first contribution in (2.7) reads

B
ugv = FPB:() Dl;l [(;) Néwj| s (28)

whered;* denotes the usual retarded integral

1 3z’
O& D=, fff T r@i— o). (2.9)

| — 2’|

When dealing with the metric at quadratic order, it can be proved thaBtdependent
retarded integral in (2.8) is actually finite whéh— 0 (the finite part is not followed by
any pole). Sau," is simply given by the value aB = 0 of the retarded integral (see [8]
and section 3). But this is due to the special structure of the quadratic s¥iifc@nd does
not remain true for cubic or higher nonlinear approximations (see, for instance, paper ).
The first contributionu” solves (2.4), but not the harmonic gauge condition )4
The divergence ofi,”, sayw) = d,u’, is a priori different from zero. Using (2.6) we
find

r

B
wh = FPp_o Ot [B() "’Nﬁ“} . (2.10)

ro r

The explicit factorB comes from the differentiation of? in (2.8) (we use the notation

n; = &r = x'/r). Owing to this factor, the finite part in (2.10) is in fact a residue at
B = 0, or coefficient of B! in the Laurent expansion. (The source term in (2.10) has a
structure which is different fron&v,"”, and unlike in (2.8) the integral admits in general a
(simple) pole atB = 0.) The second contribution,” in (2.7) is then defined in such a
way as to compensate exactly theriori) non-zero divergence; of u5", while being

a homogeneous solution of (2)4 This is possible because), is a particular retarded
solution of Jw), = 0 (in the exterior region). As such, it admits a unique multipolar
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decomposition in terms of four sets of STF tensags By, Cr, D, namely

wd = "0 [r ALt —n)]. (2.11a)
£20

wh =Y 8 [rBLt —1)]

£20

+ Z {001 [r1Cir-1(t = )] + giapdar-1 [r *Dpr-1(t = )]} . (2.110)
21
These tensors can be computed straightforwardly from the known expression (2.10), and the
contributionv,” is defined in terms of these tensors. A particular definition was proposed
in equation (4.13) of [20], where it was denoted /. Here we shall define this second
contribution slightly differently, and accordingly we use the different notatiph The
various components aof,” are given by

v = —r_1/A+8a [r_l (—an +// C. —3Ba>} , (2.129)

Ugi =rt <— / Ci + SBi(l)> — Eiap O [r_l/ Db:| — Z dr—1 [r_lAiL_l] , (2.1%)

=2

U;j = —8,'1'}’_13 + Z{ZS,’jalﬁl [I"_]'BL,]_] - 681‘,2(,‘ [r_lBj)sz]
22

+ 3L—2[r_1(A£,DL—2 + 3Bi(j22—2 — Cijr-2)]

— 20412 [r Yeani Djpr—2]} - (2.1x)

As in (2.11), all the tensors are evaluated at the retarded time.. We note that the
formulae (2.12) are non-instantaneous, as they depend on the momigrated S; at any
time less than — r through the first and second time anti-derivativesiofd,,, C,, denoted,
eg.byfA=[""A@)d' and [ C, = [ [ C.(¢)dt’ (see [20] for a discussion of this).
(To quadratic order the tensors; , ..., D; are given by some instantaneous functionals
of the momentsM,, and S;.) The main property of}" is 9,v," = —w}, which is easily
checked using the expressions (2.12). Furthermidng,” = 0, so the quadratic metric (2.7)
is, indeed, a solution of both the wave equation 2 dnd the gauge condition (% Note
that the spatial trace) = §'/v; is especially simple,

vl = 3718, (2.12)

The choice of definition (2.12) adopted here, which differs from the choice adopted in
[20], is for convenience in future work. Of course, we are free to adopt either definition
because such a choice is equivalent to a choice of gauge. However, the definition (2.12) is
slightly preferable to the definition proposed in [20] when we want to express the multipole
momentsM; andS; as integrals over the source. Thus we take the present opportunity to
redefine the construction of the exterior metric using this new definition. (Actually it can
be checked that all intermediate and final results of this paper and paper Il are independent
of the choice of definition.)

For the third (cubic) and higher nonlinear iterations, the construction of the external
metric proceeds along exactly the same lines, namely

Y =l (2.13)
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where the first terna” is the finite part of the retarded integral of the source totihepost-
Minkowskian orderul” = FPp_o Oz [(r/r0)? Ni" (h1, ..., h,_1)], and where the second
termv." is defined from the divergence!, = 3,u” by the same formulae (2.11), (2.12).
(See [20] for the proof that the construction of the metric can be implemented to any
post-Minkowskian order.)

3. Structure of the quadratically nonlinear field

In this section we investigate the structure of the quadratic mefficdefined by (2.7)-
(2.12). For simplicity we omit most of the numerical coefficients and indices, so as to focus
our attention on the basic structure of the metric. A precise computation of the numerical
coefficients is dealt with in section 4.

The structure of the linearized metric (2.3) is that of a sum of retarded multipolar waves,
consisting ofp spatial derivatives (say) acting on monopolar wawvesX (t — r),

hy~ Y 0p[r X (t = )] (3.1)
Our notation~ refers to the structure of the expression. By expanding the derivaipes
(which act both on the pre-facter! and on the retardation— r) we get

hy~ Y dor i Z(t —r), (3.2)

j>1

where the powers of /& arej > 1, and where we have expressed the angular dependence
of each term using STF products of unit vectégg= n(n;, ...n;) = STF part ofny (see
our notation defined in the footnote in section 2). In practice, one may compute (3.2) from

(3.1) by decomposingp on the basis of STF spatial derivativéé and using (A.15) from
appendix A. After insertion of (3.2) into the quadratic source te¥ff, one finds

Ny =~ ZﬁerkF(t -7, 3.3)
k>2
where the powers of /& start withk = 2 (as is clear from the fact tha{, is quadratic in
hy which is of order Xr). The functionsF are composed of sums of quadratic products of
derivatives of the functiong in (3.2).

The main problem is to compute defined by (2.8). In view of the structure (3.3), it
is a priori required to compute the finite part FB of the retarded integral of any term
A r~*F(t — r) with multipolarity ¢ and radial dependence with> 2. All the required
formulae are listed in appendix A (which summarizes results mostly obtained in previous
works [20, 8,9]). Notably, we know from appendix A that the (finite part of the) retarded
integral in the cas& = 2 is irreduciblynon-local or non-instantaneous, see (A.3)—(A.7).
When the powek satisfies 3< k < ¢ + 2, where¢ is the multipolarity (this excludes the
monopolar casé = 0), we know that the corresponding retarded integral is instantaneous,
and is given by (A.11),(A.12). Finally, wheh > ¢ + 3, we have again a non-local
expression, given by (A.13), (A.14), except in special combinations like (A.16) for which
the non-local integrals cancel out.

The computation ofi, = FPD;1 N> can be implemented by an algebraic computer
program, following the successive steps (3.1)—(3.3) and applying to each of the terms
composing (3.3) the formulae (A.5), (A.11) and (A.13), (A.14). This is probably the most
efficient way to obtaini,. However, in doing so we would discover that the only non-local
integrals left inu, come from the source terms having a radial dependence iwith2,
in other words all the non-local integrals coming from terms having ¢ + 3 actually
cancel out. Practically speaking, the source terms havirgl + 3 turn out to combine into
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combinations such as (A.16) yielding purely instantaneous contributions. This fact (proved
in [8]) is special to the quadratic nonlinearities, and does not remain true at higher orders,
e.g. at the cubic order as seen in paper Il.

The proof of the latter assertion uses specifically the quadratic structure of the 8burce
Instead of inserting in (2.5) the linearized metric in expanded form (3.2) and then working
out all derivatives to arrive at (3.3), we keep the structure of the source as it basically is,
i.e. a sum of quadratic products of multipolar waves,

N2~y 0p[r X (e = n]og[r Y — )], (3.9
involving spatial multi-derivatives wittP =iy ---i, and Q = ji - - - j, and some functions
of time X andY. Then we perform on each term of (3.4) a sequence of operations by parts
(i.e.9;A9;B = 0;(A9; B) — Ad;9; B), by which the spatial derivatives acting on the wave on
the left (say) are shifted in front and to the right. This leads to

Ny~ Y op{r Xt — r)aplr 'Y (e — 1]} . (3.5)

Only at this stage does one expand the space derivadivginside the curly brackets),
while leaving the derivatives, in front unexpanded. The result reads

Ny~ Y op{apr ™ H@ —r)} (3.6)
2<k<E+2

where the functiongd are sums of products af and time-derivatives of’, and where
we have projected the angular dependence of the terms inside the brackets on STF tensors
nr. The point is that the radial dependence of the terms inside the brackets is related to
the multipolarity? by 2 < k < £ + 2. This can easily be seen from (3.5), as the expansion
of the multipolar wavedg[r—1Y] is composed of a sum of ternts [r—1Y’] which have
1<k <e+1 (see (Ad)), yielding X k < £ + 2 after multiplication by the factor—! on
the left. The next operation is to single out the terms with pure radial dependeac2
All these terms can be obtained by applyifg on the terms inside the brackets having
k = 2. In this way one generates, besides all the térms2, many other terms with > 3,
but the latter terms can be recombined into terms of the same form as in (3.6) (and thus
having 3< k < £ + 2). See [8] for the proof. Thus (3.6) can be rewritten as

No~r72Q(n,t —r) + Z op {AiLr FF(t =)} | 8.7)
3<k<t+2

where Q(n, t — r) denotes the coefficient of 2 in the (finite) expansion of the quadratic
source when — oo with r — r = constant. The definition o (n,r —r) is

NI = %Q“”(n, t—r)+ o<r13> . (3.8)

Next, in anticipation of applying the finite part of the retarded integral, we multiply (3.7)
by a factorr®, and introduce? inside the brackets using again a series of operations by
parts. In this way we get many new terms, but they all involve at least one fAatoming
from the differentiation of-? during the latter operations. Thus

PPNy~ P20t =)+ Y op (AP R — 1)} +0B).  (3.9)
3<k<L+2
Applying the retarded integral on both sides of (3.9), commu[m);g} with 9p, and taking
the finite part, we are left with (the finite part of) retarded integrals of three types of terms:
(i) the first term in (3.9) which has radial dependencé; (ii) the terms in the brackets of
(3.9) having radial dependence such that 3 < £42; and (iii) the terms ©OB) which have
the structure (3.3) with any radial dependerdaut carry at least one fact@. In case (ii)
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the retarded integrals are given by the instantaneous expressions (A.11). In case (iii) the
retarded integrals are given by (A.18) when the poweBa$ one, and are zero for higher
powers. So in case (iii) the retarded integrals are also instantaneous. Therefore we can state
the following result [8]: the only non-local integrals i = FPD;1 N, come from case (i),
namely from the source terms whose radial dependenge?isand which are denoted by
r~2Q(n,t —r) in (3.8). These non-local integrals are given by (A.3)—(A.7). This result
holds true only in the case of the quadratic nonlinearity. In cubic and higher nonlinearities,
some hereditary integrals are generated by source terms with radial dependence such that
k>£¢+43.

Incidentally, note that the decomposition (3.9) of the source shows th#-tlependent
retarded integrd]];l[rBNz] is finite at B = 0, i.e. does not involve any pole whéh— 0.
Thus the finite part aB = 0 is simply equal to the value dﬂ;l[rBNz] at B = 0. This
can be checked from the formulae (A.3), (A.11) and (A.18), which are all fini#® at0.
Here again, this is a peculiarity of the quadratic approximation.

We are now in the position to write down the structure of the first contributjorFrom
(3.9) and (A.3), (A.11) and (A.18), we have

Uy ~ tg—i—ZﬁLr_kG(t -r), (3.10)
k>1
where the function& (r — r) depend instantaneously on the multipole mometsand S,
(i.e. at the retarded time— r only), and where the first term is non-local and given by

i =0l 20" (.t = )] (3.11)

On the other hand, the second contributigndefined by (2.11), (2.12), involves some time
anti-derivatives of quadratic products of moments. We denote these time anti-derivatives
by s». Thus the quadratic-order metric can be written as

hy~tp+s2+ Y Ar P —r), (3.12)
k=1
wherer, is the non-local integral (3.11), whesg are some anti-derivatives (given by (4.12)
below in the case of the quadrupole—quadrupole interaction), and where we have many
instantaneous terms. See (4.13) and table 2 below for the complete expreskjoin tifie
case of the quadrupole—quadrupole interaction.

4. The quadrupole—quadrupole metric

We specialize the previous investigation to the case of the interaction between two
quadrupole momentd4,, and M.,. Thus we keep in the linearized metric (2.3) only
the terms corresponding t,;,

th = —20,4p (VﬁlMab) s (41&)
Y = 25, (flMﬁ) , (4.1b)
hi =—2r"'M? . (4.1c)

(Henceforth we use the same notation for the metric constructed out of the quadrupole
moment as for the complete metric involving all multipolar contributions.)

Inserting (4.1) into the quadratic source (2.5), we can work out explicitly all the terms
composing the source either in the all-expanded form (3.3) or in the more elaborate form
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(3.7). Notably, we find that the terms with radial dependencetake the classic form of
the stress—energy tensor of a massless field,

o, t —r)=k"k"II(n,t —r), (4.2)
wherek* denotes the Minkowskian null vectat = (1, n'), and wherell is given by
M = ngpea MY MS — dngy MO MD +2M M . (4.3)

The quantityIT is proportional to the power (per unit of steradian) carried by the linearized
waves. In the general cas@/*' involves, besides the quadrupole—quadrupole terms, all the
interacting terms between multipole moments witk: 2 and the mass monopold. We
introduce the STF multipole decomposition Iaf

M(n,u) =Y n.ML). (4.4)

=0

From (4.3), the only non-zero multipolar coefficients are

3 3
Mo=¢MGMS), (4.59)
3 3
My = M<3>M<3) (4.50)

(T denotes the coefficient with multipolari/= 0, i.e. the spherical average.) With this
definition, and with the help of (A.7), we can write the non-local integyals

k*kY +°° a@’  k"kv
) = D;l[ ] / / ———TI(n/,t—s). (4.6)
Ao s —rn-n/

Some equivalent expressions follow from (A.3)-(A.5). For instance, we can it
the explicit form

+00
=1 / ds [M) M 005,16} — AM D MY 9l {4y + 2M 5 MY 9 (2)] | (4.7a)

where the moments in the integrand are evaluated at the timewhere the multi-derivative
operators mean, for instanc&f;” = 90%9"9;0; with 9" = (—d/ds, 9;), and where we use
the special notation

s—nr?Ins—r)—(+r)Inis +r)

(p) = , (4.7)
pr

(see (A.4) in appendix A).

Having the termt , we undertake the computation of all the instantaneous terms
Map X Mg in uly (namely, second terms in (3.10)). The computation is straightforward
but tedious. As said above, when doing practical computations (usually by computer), the
best method is the somewhat brute force method consisting of obtaining the source in the
all-expanded form (3.3), and applying the (finite part of the) retarded integral on each term
of (3.3) with k > 3, using the formulae (A.11) and (A.13). This is simpler than working
out the source in the more elaborate form (3.9), and using the manifestly instantaneous
formulae (A.11) and (A.18). The brute force method also has the advantage that one can
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checkthat all the non-local integrals except those coming fromrttieterm cancel out (as
well as the associated logarithmsQf The termu, takes the form

6
1
§ : § : (6—k—m) 5 r(m)
7 amnathMab Mcd
k=1 m=0

O’)

A~ 6—k—
+ Ok A MEFT M + kMG MG Y (4.89)

m
61
uy =13 + 2 Py
k=1

~ —k— 6—k—
+ el A MEFT MY + frn MG M

0

A 6—k—
Z {dhAianca Mgy " M

m=0

6—k— 6—k—
+gm UbLM( m)M(m) +hm uM,(h m)Mé;n)} ) (43))
1< (6—k—m) y 7(m) (m)
kA 6—k—
uy =15 + Z o Z PrAijapeaMy MY + qE A MET M
k=1 m=0

A 6—k— 6—k—
+ry]:18ijnadeM(§b m)Mim) +s Vl”M( m)M(m)

6—k— ~ 6—k—
+ 1 8i Ay MY Myt + ul 8i My T MY+ 0k Ape M, T M

+ wfnﬁa(lMl()ﬁb - ’")M(Wl) +x Nap M(G ‘- m)M(m) +y’{:1ﬁabML(l?l - m)M/(;;l’)

(6—k—m) 5 s(m)
+z Ma(l M/)a } s (4&:)
where all moments are evaluated at time- and where:X , b% . ..., zX are purely numerical

coefficients. Using the algebraic computer program Mathematica [31], we have obtained
the numerical coefficients listed in table 1.

Next we follow the second part of the construction of the metric, and compute the
dlvergencew2 = d,uy  (see (2.10)—(2.12)). To this end, we need the divergence of the
integral 7, which is ea5|ly evaluated by noticing thats,” can be written, analogously
to (2.10), as some residue Bt= 0 of a retarded integral (because of the explicit factor
B), and, furthermore, that the radial dependence of the integrand is mere(pecause it
comes from the differentiation of the source ternt). From (A.18), we know that when
k = 3 the residue is non-zero only when the multipolarity is 0. This immediately yields

B
Kt de
d15" = FPpo 05| B ) Enl= _7/ Zk(n,t—r).  (4.9)
ro) r3 rJ) 4m

The = 0 component of (4.9) is proportional to the angular averade,already computed
in (4.52). One can check that the = i component is zero. Thus,

3,13 = —r MY M) (4.108)

3,15 =0. (4.10)

Knowing (4.10), we can obtain}, by direct differentiation of the expressions (4.8), using
the coefficients in table 1. Again the computation is quite lengthy, but it provides us with
an important check. Indeed, from (2.11) one must find that the divergefide a solution

of the source-free d’Alembertian equation, namely, = 0. This test is very stringent,
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Table 1. The numerical values of coefficients entering the expression’g‘bras defined in (4.8).
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as a single erroneous coefficient in table 1 would almost certainly cause its failure. Thus

we determine all the tensows,; , ..., D, in (2.11). The non-zero ones are given by
A= =My May = 555Moy) My — M ML) — EMMG) . (4.118)
Ay = —2(MI My, + MM (4.11b)
B = =My My — EM M) + M) ML) (4.1%)
Cij = M My — EMIMS) + EMS M (4.11d)
Di = giap(— MO My, —2MP MY — EMOM?) . (4.1%)

By inserting the latter values into (2.12), we obtain the components of the second hart
In particular, we find some time anti-derivatives which defitié (see (3.12)) as

t—r
§90 = 41 / du MOMO W), (4.123)
—0oQ0
t—r
sg = —éemhaa <r18bcd/ Clu MS)MQ?W)) J (4.1%)
—00
5§ =0. (4.1%)

The physical interpretation of these anti-derivatives is clear. Indeed the linearized metric
(2.3) depends in particular on the mass monopdleand current dipoleS; of the source
(both are constant). Physically/ and S; represent the total mass—energy and angular
momentum of the system before the emission of gravitational radiation. Now the integral
s3° given by (4.12) represents a small modification, due to the emission of radiation, of
the initial massM. This is clear from the comparison of (4d)2and (2.&), showing
that there is exact agreement with the energy loss by radiation as given by the standard
Einstein quadrupole formula. This result is originally due to Bonnor [10], and Bonnor
and Rotenberg [4]. Similarly, the integrsg’i given by (4.1®) represents a modification
of the total angular momentum in agreement with the quadrupole formula for the angular
momentum loss. (There is no loss of total linear momentum at the level of the quadrupole—
guadrupole interaction (one needs to consider also the mass octdpgland/or the current
qguadrupoleS,;).)
The quadratic metrié,” can now be completed. We add up the two contributigfis
(given by (4.8) and table 1) and,” (given by (4.11) and (2.12)). The local terms are
written in the same form as in (4.8). Thus,
6 1 6=k
hy' =t +55" + Z % Z{same expressions as in (4-8) but
k=1
with coefficientsa,), ..., zX} (4.13)

m=0

where the non-local integral§” ands," are given by (4.7) and (4.12), and where all the
coefficientsay, ..., z¥ are listed in table 2.

5. The quadrupole—quadrupole metric in the far zone

We investigate the behaviour of the quadrupole—quadrupole /igldn the far zone, near
future null infinity (i.e. at large distances when we recede from the source at the speed
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of light). The degrees of freedom of the radiation field, to leading order in the inverse
of the distance, are contained in the transverse and tracefree (TT) projection of the spatial
componentsij of the metric (denoted b)giT,.T). These are the so-called observable (or
radiative) multipole moments, which are ‘measured’ in an experiment located far away
from the system. The TT projectiag);’, to first order in ¥r, reads

4 > 1 2 1
TT e . - . J— . .
8ij = ;Puab ; 1 {nL—ZUl]L—Z x 1l’laL_28ab(, V])hL—Z} +0 <r2> (5.2)

(with G = ¢ = 1), whereU, and V; denote the mass-type and current-type observable
moments (both are functions of- r), and where the TT projection operator is

Pijab(n) = (5m n; na)(‘sjb - njnb) ((Slj ninj)((sab - nanh) . (52)

The ¢-dependent coefficients in (5.1) are chosen so thatnd V; agree at the linearized
order with thefth time derivatives of the momenid, and S, (compare with (2.8)).

Let us consider first the non-local integrgl (see (4.6), (4.7)). As we know from (A.8),
the asymptotic expansion when— oo, t —r = constant of the retarded integral of a source
with radial dependence2 is composed of terms/%" and Inr/r". As such,;” behaves
like Inr/r whenr — oo, t — r = constant. The logarithm is due to the deviation of the
flat conesr — r = constant in harmonic coordinates from the true spacetime null cones.
The metric in harmonic coordinates is not of the normal Bondi-type at future null infinity
[32,33]. Removal of the logarithm is done using radiative coordinates, so defined that the
associated flat cones agree, asymptotically, whes +oo, with the true null cones (see,
e.g., [21]). This method, adopted in [9], permits one to compute the observable moments
in the non-local term}”. Here we follow another method, found by Thorne [15] and
Wiseman and Will [16], which consists of applying first the TT projection operator (5.2) on
15", Because the TT projection kills any (linear) gauge term in the dart of the metric,
this method shortcuts the need for a transformation to radiative coordinates. However, one
must be cautious in taking the limit— oo, r —r = constant using (4.6). It is not allowed,
for instance, to work out a leading/A term from the second expression in (4.6) because
this term would involve a divergent integral (in accordance with the fact that the leading
term is actually In-/r). But, as pointed out in [15, 16], the divergent parts of the integral
cancel out after application of the TT projection, and at the end one recovers the correct
result. Thus, we compute

. +00 dsy 1a.,,'b
)T = - ija,,(n)f ds [ " -, (5.3)
, Ao s —rm-n’
(Note that the TT projection as defined in (5.2) is purely algebraic. Strictly speaking it
agrees with the true TT projection only when acting on the leadihgtérm.) With the
multipole decomposition (4.4) we have

)T = Py / due T (u) / B (5.4)

>0 —u—rn-n

We decompose the product of unit vectefs;n; on the basis of STF tensors, we drop the
terms having zero TT projection, and we express the remaining terms using the Legendre
function of the second kin@, (see (A.€)). Restoring the traces on the STF tensors, and
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dropping further terms having zero TT projection, we obtain

GNTT (-1 ft_r
)" =—Pijw Z 20132 D@2t 1)nL—2 du Mapr—2(u)

=2 —o0
t—u —Uu
{(2@ ~v0ua (")~ v o ()
recrvo ()} (55)

The limit at future null infinity can now be applied. Indeed it suffices to insert the expansion
of Q,(x) whenx — 1 as given by (A.8). As expected, the limit is finite, because the
terms Inx — 1) in the expansions of th@,’s cancel out. This yields [13, 15, 16, 9]

t—r

np_» Inr
(tz) = - ”ab;(ﬂ+l)(ﬂ+2) du Mapr— 2(“)+O( 2 ) . (5.6)

In the case of the quadrupole—quadrupole interaction we find (using (4.5))
i 1 t=r In
)" = ZPijar / dlu [i;Mjf;jM;fg . nch@M“)] +0 (r2r> (5.7)
—Q

(where () denotes the STF projection). The non-local integral (5.7) represents the
guadrupole—quadrupole contribution to the nonlinear memory [14-16, 9].

We now turn our attention to the instantaneous part of the metric. All the terms have
been obtained in section 4. We need only to apply the TT projection on/thedrt of 75
as given by (4.13) and the coefficients listed in table 2. After several transformations using
STF techniques, we obtain

L 1
ij ijN\TT 22,0 103,@ 57D 42703 1,2
(h2 -1 ) = ;Pijab{_7Mc(aMb>C + 7Mc(aMh)c + 7Mc<aMh)c
7 a7 21 3 oD 7 (1) 17373 1,
+ e foMigyMeay + ToMigy Mgy + 5§ Mgy Moy ]
1
1 5 Lag® gD
+ Nag€acg (seﬂh[mMﬁg)Md)f - EM(SQ)MLﬁf])} +0 (}’2) (58)

(where the underbar anmeans that the indexis to be excluded from the STF projection).

Using (5.7) and (5.8), we deduce the observable moments by comparison with (5.1).
The quadrupole—quadrupole interaction contributes only to the observable mass quadrupole
momentU;;, mass 2-pole moment;;;;, and current octupole mome#;,. We find

t—r
2 @3 ;| 13,05 50 @D 253,033,

SUU = _7/ Ma(i Mj)a + 7Ma(i M/)“ - 7Mu(i Mj)cz - 7Ma(i M}')u > (5%)

—00

—r

3) . ,(3 5 a4 .1 3) 4,2

8Uijkl — %/ M((U)M( ) M( )M Ky — 63M((”)M( ) 102M( )M( ) (5%)

—00

4 1

Vi = eani[ 4 M1e Migy — M3 M{)]. (5.90)
Note that the non-local integrals are presentjpandU;;, but not in the current moment
Vijk-

Finally, we add back in (5.9) the fact@r and the powers of /& which are required
in order to have the correct dimensionality. When this is done we findditigt is of
order ¥c® in the post-Newtonian expansion (2.5PN order), while bty andsV;;; are
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of order ¥c® or 1.5PN. This permits writing the complete expressionstgrto 2.5PN
order, andU;;x, Vijx to 1.5PN order. In the case &f;;, the reasoning has been done in
[25], which shows that besides the quadrupole—quadrupole téffpsx M., there is an
interaction betweerd,;, and the (static) current dipol&. also at 2.5PN order, and there

is the standard contribution of tails (computed in [9]) at 1.5PN order. (In principle there
is also an interaction between the mass octugdlg. and the mass dipolé7, at 2.5PN
order, but we have chose¥, = 0.) Thus, from (5.8) and equation (5.7) in [25],

2GM [77/¢ t—r/c—u e
c3 . dM [In <2b> + 12} (M)

G t—r/c
" {‘2 | am@mo + inm,
C —

7 ali
00

Uij(t —r/c) =

1
Sag@ s 2,03 3,2 | 1 4
_7Ma(iMj)a_7Ma<iMj)a+38ab<iMj>aSb} +O(c6> . (510)

The tail integral involves a constar% computed in appendix B of [9]. (See also [9] for
the definition of the constarit) The coefficient in front of the termM,;, x S. is computed

in appendix B below. In a similar way, we find th&t;,; and V;;, involve the same types
of multipole interactions, but that the term,, x M., are of the same 1.5PN order as the
tail terms. Thus,

G 1=r/c t—r/c—u
Uyjua(t — /) = M3, + 3{ZM/ dlu [In (2/b> + 59} M, ()

—0Q

l*?’
+%/ du MO M ) — ZM My,

o0
1
6317 5 (D) 102 (©F Vi
— CMI My — M) M } +o<c4> , (5.11)
and
G t—r/c t — _
Vit —rfe) = S& + 3{21&4/ du [In (r/cu> }Sff’k)( )
c o 2b
1
+ Eapii [%)M;;")Mk 1M<4>M,§>1,1] - 28, Mj;‘;} +o<c4) . (5.12)

The constant%g) andis‘ are obtained from appendix C in [24]. The coefficient of the term
S<,-Mj(,f>) is computed in appendix B below.

The observable quadrupole momdn up to 2.5PN order obtained in (5.10) yields
the total power contained in the radiation field (or energy flux) complete up to the same
2.5PN order. Indeed, it suffices to insert into (5.10) the intermediate quadrupole moment
M;; determined in [25] as an explicit integral extending over the source at 2.5PN order (the
other moments needed being the octupbdg; and current quadrupol§; at 1PN order,
and M;;,; and S;;, at Newtonian order, which are all known). Note that in order to obtain
the waveform itself (and not only the energy flux it contains) one néggsandS;; at the
higher 2PN order.

Appendix A. Formulae required to compute the quadratic nonlinearities

This appendix presents a unified compendium of formulae, many of them taken from
previous works [8,9, 20], which permit the computation of the quadratic nonlinearities
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(involving any interaction between two multipole moments). The source of the quadratic
nonlinearities takes the structure (3.3), so we present the formulae for the finite part (as
defined in (2.8)) of the retarded integral of any tefigy ~*F(t — r) with multipolarity ¢

and radial dependenoe® wherek is an integer> 2. (For practical computations it is
convenient to use the source in expanded form (3.3) rather than in the more precise form
(3.9).) The problem was solved in [20], where a basic formula for&fdependent retarded
integral was obtained:

5e[() Fere-n]- =
Fl\ro) AT T 2B B—k+D(B—k+1) - (B—k—(+2)

400 _ \B—k+t+2 _ B—k+0+2
x/ dsF(z—s)éL{(s r) - (s +r) } (A1)

This formula is valid (by analytic continuation) for all values Bfin the complex plane,
except possibly at integer values &f where there is a simple pole. Note that to the
STF product of unit vectorg,, in the left-hand side corresponds a STF product of spatial
derivativesd, in the right-hand side (see the footnote in section 2 for our notation).

Our first case of interest is that of a source having 2. In this case (A.1) becomes

B A
_al (T nr . 1
k [(ro) 2t _’)} © 2(2r)BB(B—1)---(B —0)

400 B+l _ B+L
x/ dsF(t—s)éL{(s r) (s +r) } (A.2)

r

of which we compute the finite part in the Laurent expansion wBer> 0. We repeat
briefly the reasoning of [8]: the coefficient in front of the integral admits a simple pole at
B = 0, but at the same time the integral vanishe®at 0 thanks to the identity (A36) in

[20] (see also (4.28) in [8]). As a result, the right-hand side of (A.2) is finite Bt= 0, in
agreement with the fact that the retarded integral in its usual form (2.9) is convergent, with
value

—1 ﬁL (_1)£ oo
Oz |:r2F(t—r)i|= > ) ds F(t —s)
A {(s —rfins —r) — (s+r)£|n(s~|—r)}
X aL ’
Lr

where we have removed the reference to taking the finite pdt=at0. Note that the length
scalerp drops out in the result (this is thanks to (4a30n [8]). The formula (A.3) can be
generalized to the case where the angular dependence is contained in any (non-tracefree)
productk,, - - - ko, Of £ Minkowskian null vectorsc, = (-1, n),

_1\¢ +oo
Dgl[k“lrf‘“F(t—r)}z(zl)/ ds F(r — s)

s—=nrfIins—r)— G +rfinis+r)
o } '

where the spacetime derivatives in the right-hand side are definég by (d/9ds, 9;). A
useful alternative form of (A.3), proved, e.g., in appendix A of [9], reads

~ A +00
P [:lgF(z —r)] = —HTL/ ds F(t —S)Qz(i), (A.5)

(A.3)

(A.4)

x8a1~~8w{
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where Q,(x) denotes theth-order Legendre function of the second kind (with branch cut
from —oo to 1, sox > 1). The Legendre function is given by

1
d
0i(x) =1} / Rk (A.63)

=3 Px )In( ) Z P j (1) Pia(x) (A.6b)

where P, is the Legendre polynomial (see, e.g., [34]). Note that by combiningajfatid
the expansion of Ax —n -n’) in terms of Legendre polynomials (see, e.g., (A26) in [20]),
one has

ALQu(x) = / @ m (A.60)

Ao x —n-n’

where the angular integratiorfd is associated with the unit directiari. Combining (A.5)
and (A.&), we obtain another alternative formula,

+oo ’ _
mp [rle(n,t } / /dQ F'.t—s) (A7)

Ao s—rn-n’

This formula is valid for any functionF(n, u) (not only for a function having a definite
multipolarity ¢ like in (A.5)). It can also be recovered from the retarded integral in its usual
form (2.9).

The leading terms in the expansion wher> oo (with r — r = constant) follow from
the expansion of the Legendre function when> 17. The expression (Al yields

l
Q¢(x) =—1In ( ) Z; +O[(x — D) In(x — 1], (A.8a)

j=1

and with (A.5) this implies [9]

~ ~ +00
DI—?1|:Z§F(I_,~):|=’;/(; dAF(t—r—A)[In( )+Z } ('?;) (A.8b)

This formula gives the leading termyir and the sub-dominant termyA. If we try to find
the leading term using (A.7) instead of (A.5) (i.e. by changing the variabter + X in
(A.7) and expanding the integrand wher> oo, t — r = constant), we get formally a/t
term but as a factor of a divergent integral, as expected since the leading term is actually
Inr/r.
In the case of a source term corresponding t& 3, the relevant formula is obtained
by performingk — 2 integrations by parts of (A.1). We get in this way

B A B k-3 @) (f —
5 () Sre=n]= () Zewn s

ro

B A
+ B(B) DR1|:<:O> %F<k—z>(t —r):|, (A.9)



108 L Blanchet

where the second term is a retarded integral of the type studied before, and where the
coefficients are

2B —k+2+i)---(B—k+3)

ai(B):(B—k+2—£+i)--~(B—k+2—£)(B—k+3+£—|—i)~~(B—k+3+£)’
(A.10a)

k=2B(B —1)...(B —
B(B) = 27BB -1 (B0 (A.10D)

B—k+2--B—k—L+2DB+L- - (B—k+£+3)°
The factors symbolized by dots decrease by steps of one unit from left to right. Before taking
the finite part, one must study the occurrence of poleB at 0 in the coefficients (A.10).

Two cases must be distinguished. In the case B< ¢ + 2, none of the denominators in
(A.10) vanish atB = 0. This implies that the second term in (A.9) is zeraBat 0, owing

to the explicit factorB in the numerator oB(B). Thus we obtain (in the case8k < [+2)

a finite result whemB — 0, which is local and independent gy,

B, k—=3(} _ _
DR{<’> niFO—rﬂ 2Bk =3l +2-0)! .
ro r

so (C+k—2)! "
"f €+ FE3Di —r)
25 j1(6 — j)! PYEE] :

(A.11)

Jj=0
This formula can be checked by applying the d’Alembertian operator to both sides. When
r — oo, t —r = constant, it gives

B A k-3 _ _ k=3 (4 _
DR1|:<r) niF(t—r)] __2 k=3 +2—-k)!, F (t r)+o<1).
ro r r
(A.12)

seo L +k—2)! L
Next, in the cas& > ¢+ 3, the denominators of botl (B) and8(B) vanish atB = 0,
so «;(B) involves a (simple) pole, whilg(B) is finite (because the pole is compensated
by the factorB in the numerator). In this casé & ¢ + 3) the finite part reads

B ~
FPs_o Dgl[(ro) ';fF(t—r)}

B kf&»ﬁ FO@t—r)  (=D}22(k — 3)!
T ki T (k= 2Nk — £ - 3

Y k—=3) (4 _ A
y {( D <r>éL<F (t r)>+DE1[mF<kz>(t_r)“.
2 70 r r2

72

~

(A.13)
The coefficients are given, whenQi < k — ¢ — 4, by
—92)i — | —3_Nl — 0 —4 -l
5 = (—2)i (k — 3)! k+¢—3—i)(k ‘ 0—4— )  (Alda)
(k+€—2)!(k — € —3)! (k—3—1i)!
and, whenk — ¢ —3<i <k-—3, by
o 2/ (=) (k — 3)! (k+¢—3—=10)!
kL= k=) (k—3—D'l—k+i+3)!
k—€—-3 0+34i—k k—3 k+0-2
1 1 1 1
X{ i Z i Z -+ Z } (A.14b)
=/ PR B B s S
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(One can express (A.14) with the help of the Edlefunction and its logarithmic derivative
¥.) Note that (A.13) has a genuine dependence on the lengthrgahle@ugh the logarithm
of r/rg, which is a factor of a homogeneous solution, say

» (Gt —r1) o 4D G =)
aL< ; ):(—1)‘fnL;2 . (A.15)

ijie=pr i

The last term in (A.13) involves a non-local integral known from (A.3)—(A.5) or (A.7).
There exists a special combination of retarded integrals (A.13) which is purely local, finite
at B = 0, logarithm free and independent @f This combination, particularly useful in
practical computations, reads

A\’ . FO@ —r) F(t—r)
D,f[(ro) iir (2(1<—2)rk+[(k—1)(k—2)—@(£+1)]rkH)”B=

_ . (k—t=2) (p _
where
o DR 2 - 2k -3k -2 A.16b
Y= Gl Dl — g (FHEDE— =D = @k =k - D). (A.16b)

The formula is valid wherk > ¢ + 2; whenk = ¢ + 2 we recover (A.11). The second
term in (A.16) is a homogeneous solution fixed by our particular way of integrating the
wave equation. Thus the first term by itself is a solution of the required equation, but the
homogeneous solution must be taken into account when doing practical computations with
this method.

To leading order when — oo with r — r = constant, (A.13) reads

B k+£ok—3 2
LT\ Ay e A e I
FPp—oLx [(ro) ,kF(t_’)] k=2l k—t=3)! r

+o0 A k0349 kitz2q 1
k=2)
X/o dr F (t—r—A)[In<%>+Z.+Z_]+o<r2>,

[ ey )

(A.17)

As in the casek = 2 given by (A.®), the leading 1r term is non-local. However, in
contrast with (A.8), the expansion is free of logarithms of(this is true to all orders in
1/r), and depends irreducibly on the length scgle

Finally, we give the expression of the pole part of the retarded integral when 0
in the casek > ¢ + 3. The result, easily obtained from (A.9), (A.10), is

_ (—1)k2k—3(k_3)! é (F(k—l—s)(t_r)>
s (k+C—2)(k—€—3)! L .

r

(A.18)

As there are only simple poles, the result is zero when the powBrisfstrictly larger than
one.
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Appendix B. The quadrupole—(current-)dipole interaction

We start from the linearized metric (2.3) written for the mass quadrupfile and the
(stationary) current dipolg,,,

R = —20,,(r M,), (B.1a)
Ry = — 26140, (r~ ) Sp 4 20,(r M D), (B.1b)
hy =—2r"'M?, (B.1c)

and substitute it into (2.5), keeping only the tertg, x S..

Once the sourc&v,” for this interaction is known in all-expanded form (3.3), we can
apply, to each of the terms, the formulae of appendix A. However, as we are only interested
in the two coefficients of the term#,;, x S. in (5.10) and (5.12), it is sufficient to obtain
the 1/r part of the metrichy” whenr — oo, t — r = constant. Thus we proceed like
in appendix C of [24], where the/t part of 2" in the cases of quadrupole-monopole
interactions was computed. We recall the necessary formulae derived in [24],

FPg_o D}l [rB_léL (r_lF(t — r))]

( 1)KnL © A ‘1 Inr
/ dr FO(r — A)[In(zr)jtzj}_{_o(rz),

j=1
(B.2a)
FPa—o O [P0 Db, (2 F (1 = )]
-0t FO®@¢ —r) 1

FPy_o 3 [rBa,-,- (Y3, (LR (- r))]

(_1)£+1 R
= m{—g&j&o + (nij + &ipng — 2[8ianr-1yn; + 8jnr—ynil
FED (¢ — 1
+ 25,-<u£81u£71nL_2)}# +0 (}2) . (B.2¢)

We have added in (BAQ the term—gsijago (wheres;; andéo are Kronecker symbols) with
respect to the formula (C3) given in appendix C of [24]. Indeed this term is mistakenly
missing in the formula (C3) of [24] (but it does not change any of the results derived in
[24]).

The formulae (B.2) yield straightforwardly the/A term in the first part,” of the
metric (see (2.8)). Then we compute the/(iterm of the) divergencev) = 9,u5” and
deduce from (2.11), (2.12) the second paft of the metric. We find that,"” is non-zero
in the caseM,;, x S., in contrast to the cased x M; andM x S; studied in [24] for which
thev,"’s are zero. The result of the computation is

h0 = —4r_18abcnadM(4) S, + 0072, (B.3a)
3 bd

hY =7 = 2espena My Se — 2eiapnacaM’y Sp] + O(r™2), (B.3b)
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i - 4 4 4
hlzj =r l[%gabcnijade(d) Sc - gsahcna(iMj()zSc + (SijeahcnadMlgd)Sc

- 25ab(inuch()46)Sb + %8ab(inj)achL(-3)Sb] + O(r_z) . (B3C)

From (B.X) we obtain the TT projection and then deduce the associated observable
moments. Only the mass quadrupole and current octupole moments receive a contribution,

8Uij = Seani M S, (B.4a)

§Viji = —2M ;) Sy). (B.4b)
We thus obtain the coefficients quoted in (5.10) and (5.12).
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