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Abstract. The two independent ‘plus’ and ‘cross’ polarization waveforms associated with the
gravitational waves emitted by inspiralling, non-spinning, compact binaries are presented, ready
for use in the data analysis of signals received by future laser interferometer gravitational-
wave detectors such as LIGO and VIRGO. The computation is based on a recently derived
expression of the gravitational field at the second-post-Newtonian approximation of general
relativity beyond the dominant (Newtonian) quadrupolar field. The use of these theoretical
waveforms to make measurements of astrophysical parameters and to test the nature of relativistic
gravity is discussed.

PACS numbers: 0430, 0480, 0480N, 9760J, 9760L

1. Introduction

Two large-scale laser interferometer detectors of gravitational waves are now under
construction in the US (LIGO experiment [1]) and in Europe (VIRGO experiment [2]).
These experiments should detect the gravitational waves generated by inspiralling compact
binary systems at cosmological distances [3–7]. These are systems of two compact objects
(neutron stars or black holes) spiralling very rapidly around each other in their late stage
of evolution immediately preceding the final coalescence. The dynamics of such systems
is entirely ruled by the radiation reaction forces due to the emission of the gravitational
radiation itself. Estimates of the number of inspiralling/coalescing events each year have
been found to be quite promising [8–11].

The LIGO and VIRGO observations of inspiralling compact binaries should provide
precise measurements of the masses of the objects, possibly of their spins and possibly,
in the case of neutron stars, of their radii [12–19]. The absolute luminosity distance of
the binary will be measured independently of any assumption concerning the nature (and
masses) of the objects [20]. However, if the intrinsic masses of the objects are known,
the cosmological red-shift of the host galaxy where the event took place can be measured.
There is hope of deducing in this way a measurement of the Hubble parameter from an
assumption concerning the statistical distribution of masses of neutron stars [21, 22]. The
puzzle of the origin of gamma-ray bursts could be solved by comparison of the times of

0264-9381/96/040575+10$19.50c© 1996 IOP Publishing Ltd 575



576 L Blanchet et al

arrival of the gravitational waves and of gamma ray bursts [10, 23, 24]. Furthermore, new
limits on the validity of alternative theories of gravity, notably scalar–tensor theories [25],
and new tests of general relativity in the strong field regime [26] should be possible by
monitoring very precisely the inspiralling signal.

To prepare for the analysis of such signals in the LIGO and VIRGO detectors one needs
to compute the gravitational radiation field generated by a system of two point-masses
moving on a circular orbit (the relevant case because the orbit will have been circularized
by radiation reaction forces). Since inspiralling compact binaries are very relativistic, this
problem is highly nontrivial and represents a challenge to relativity theorists [5, 7], as its
resolution involves carrying out the calculation to a very high order in terms of a post-
Newtonian expansion (see Will [27] for a review). The problem can be decomposed into
two different problems, which can be referred to respectively as the ‘wave generation
problem’ and the ‘radiation reaction problem’ (see Damour [28] for a discussion).

The wave generation problem deals with the computation of the gravitational waveforms
generated by the binary (at the leading order in 1/r, wherer is the distance of the binary)
when the orbital phase and frequency of the binary take some given valuesφ andω. This
problem involves computing the amplitude of each harmonic of the wave corresponding to
frequencies which are multiples of the orbital frequency, with the predominant harmonic
being at twice the orbital frequency.

The radiation reaction problem consists of determining the evolution of the orbital
phaseφ(t) itself as a function of time, from which one deduces the orbital frequency
ω(t) = dφ(t)/dt . The actual time variation ofφ(t) is nonlinear because the orbit evolves
under the effects of gravitational radiation reaction forces. In principle, it should be
determined from the knowledge of the radiation reaction forces acting locally on the orbit.
However, these forces are at present not known with sufficient accuracy (only the relative
first post-Newtonian corrections are known [29, 30]), so in practice the phase evolution is
determined by equating the high-order post-Newtonian energy flux in the waves or energy
loss (averaged over one orbit) and the decrease of the correspondingly accurate binding
energy of the binary.

Estimates of the precision needed in the resolution of these two problems can be inferred
from black-hole perturbation techniques in the special case where the mass of one object
is very small as compared with the other mass [31–37]. The required precision is reached
when the systematic errors due to the neglect of some higher-order approximation become
less than the statistical errors due to noise in the detector. It turns out that the post-
Newtonian corrections in the time evolution of the phase (radiation reaction problem) will be
measurable in advanced detectors, probably up to three post-Newtonian (3PN) orders beyond
the (Newtonian) quadrupole radiation [33, 37]. This corresponds to relativistic corrections
in the energy loss as high as order∼ (v/c0)

6, wherev is the orbital velocity and where we
denote for later convenience the speed of light byc0. The possibility of measuring such
high-order corrections can be understood crudely from the fact that, in order not to suffer a
too severe reduction in signal-to-noise ratio, one will have to monitor the phase evolution
with an accuracy of one tenth of a cycle over the tens of thousands of cycles during the
entire passage through the frequency bandwidth of the detector.

It has been argued [15–17] that most of the accessible information allowing accurate
measurements of the binary’s intrinsic parameters (such as the two masses) is in fact
contained in the phase, because of the accumulation of cycles, and that rather less accurate
information is available in the wave amplitude itself. For instance, the relative precision
in the determination of the distancer of the source, which affects the wave amplitude,
will be less than for the masses, which strongly affect the phase evolution. Consequently,
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the determination ofr does not necessitate as high a post-Newtonian precision as for the
masses, and to a good approximation it should be adequate for that purpose to include in the
gravitational waveform (as determined by solving the generation problem) post-Newtonian
corrections up to an order of less than 3PN order. To determine just what order is required
in the waveform would necessitate a measurement-accuracy analysis similar to the ones
performed in [17–19], but not restrained to a model waveform taking only the higher-order
phase evolution into account (namely the so-called restricted post-Newtonian waveform).
To our knowledge, no complete investigation has been performed yet, however we believe
that such a study would be desirable. For instance, it is conceivable that conclusions reached
regarding the needed accuracy in the determination of the phase in the reaction problem are
modified when the full amplitude evolution of the wave is taken into account.

Both the gravitational waveform and associated outgoing flux or energy loss have been
obtained recently to the 2PN approximation corresponding to the relative post-Newtonian
order∼ (v/c0)

4. Two computations have been performed, one by Blanchetet al [38] using
a mixed post-Newtonian and post-Minkowskian formalism [39, 40], and one by Will and
Wiseman [41] using a purely post-Newtonian formalism due to Epstein and Wagoner [42]
and Thorne [43]. The result of these computations for the energy loss has been summarized
in [44]. More recently, the precision on the energy loss has been extended to include the
next 2.5PN approximation [45].

Even though the 2PN or even 2.5PN precision in the resolution of the reaction problem
appears to be still insufficient to make full use of the phase data [33, 37], it is plausible, as
previously argued [15–17], that the 2PN waveform amplitude is already close to what will
be needed by the LIGO and VIRGO detectors. However, this 2PN waveform is displayed in
[38, 41] in a format which is not ready for use in the future analysis of the outputs of LIGO
and VIRGO. The aim of this paper is to present the complete, ready-to-use expression of
the waveform, including the amplitude of all the wave harmonics present, to 2PN order, for
non-spinning bodies. More precisely, we compute the two independent polarization states
of the gravitational wave (customarily referred to as the ‘plus’ and ‘cross’ polarizations)
which define the theoretical ‘templates’ to be cross correlated with the raw output of the
detectors. The templates should be used both ‘on line’ when searching for the signal and
later when the signal is subject to a very precise data analysis involving a more accurate
determination of the parameters, and possibly the measurement of other parameters.

In section 2 we present our main result, namely the two plus and cross polarization
waveforms to 2PN order as functions of the phase and frequency. For completeness and
discussion thereafter, we recall also the results obtained in [38, 41] concerning the time
evolution to 2PN order of the phase and frequency. In section 3 we discuss various issues
associated with the actual use of these waveforms.

2. The gravitational waveforms to second-post-Newtonian order

The gravitational wave as it propagates through the detector in the source’s wave zone
is entirely described by the transverse and traceless (TT) asymptotic waveformhTT

ij =
(gij − δij )

TT, wheregij denotes the spatial covariant metric in a coordinate system adapted
to the wave zone, andδij is the spatial part of the Minkowski metric (signature− + ++).
The two polarization statesh+ and h× are defined byh+ = 1

2(pipj − qiqj )h
TT
ij and

h× = 1
2(piqj + pjqi)h

TT
ij wherep and q denote two polarization vectors forming, along

with the directionn from the source to the detector, an orthonormal right-handed triad. The
detector is directly sensitive to that linear combination of polarization waveformsh+ and
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h× which is given by

h(t) = F+h+(t) + F×h×(t) (1)

whereF+ andF× are the so-called beam-pattern functions of the detector depending on two
angles giving the direction−n of the source, as seen from the detector, and a polarization
angle specifying the orientation of the vectorsp andq around that direction. The expressions
of F+ andF× in terms of these angles are given explicitly in the case of laser-interferometer
detectors by, for example, equation (104) of Thorne [3].

The two polarizationsh+ andh× in the case of a binary made of non-spinning point-
masses moving on a (quasi-)circular orbit are obtained by a straightforward computation
starting from the end results of [38, 41]. We choose the polarization vectorsp andq to lie
along the major and minor axis (respectively) of the projection onto the plane of the sky
of the circular orbit, withp oriented toward the ‘ascending node’, the point at which body
one crosses the plane of the sky moving toward the observer. The TT waveformhTT

ij is
split as in equation (4.1) of [38] into the sum of an ‘instantaneous’ contribution(hTT

ij )inst

and of a ‘tail’ contribution(hTT
ij )tail (we comment later on the presence of wave tails in the

signal and their possible detection). The instantaneous contribution is given, for example,
by equations (4.5) of [38] from which we compute first(h+)inst and (h×)inst. Then we
add to these the tail parts(h+,×)tail which are already obtained in equations (4.9)–(4.10) of
[38]. Identical formulae result from calculatingh+ andh× from the circular-orbit limit of
equations (6.10) and (6.11) of [41]. Some transformations are necessary in order to express
the result in the best form for applications in the LIGO and VIRGO detectors. The final
result reads

h+,× = 2Gmη

c2
0r

(
Gmω

c3
0

)2/3

{H(0)
+,× + x1/2H

(1/2)
+,× + xH

(1)
+,× + x3/2H

(3/2)
+,× + x2H

(2)
+,×} (2)

where the brackets involve a post-Newtonian expansion whose various post-Newtonian
terms are given for the plus polarization by

H
(0)
+ = −(1 + c2) cos 2ψ (3a)

H
(1/2)
+ = − s

8

δm

m
[(5 + c2) cosψ − 9(1 + c2) cos 3ψ] (3b)

H
(1)
+ = 1

6[(19+ 9c2 − 2c4) − η(19− 11c2 − 6c4)] cos 2ψ − 4
3s2(1 + c2)(1 − 3η) cos 4ψ

(3c)

H
(3/2)
+ = s

192

δm

m
{[(57+ 60c2 − c4) − 2η(49− 12c2 − c4)] cosψ

− 27
2 [(73+ 40c2 − 9c4) − 2η(25− 8c2 − 9c4)] cos 3ψ

+ 625
2 (1 − 2η)s2(1 + c2) cos 5ψ} − 2π(1 + c2) cos 2ψ (3d)

H
(2)
+ = 1

120[(22+ 396c2 + 145c4 − 5c6) + 5
3η(706− 216c2 − 251c4 + 15c6)

−5η2(98− 108c2 + 7c4 + 5c6)] cos 2ψ + 2
15s

2[(59+ 35c2 − 8c4)

− 5
3η(131+ 59c2 − 24c4) + 5η2(21− 3c2 − 8c4)] cos 4ψ

− 81
40(1 − 5η + 5η2)s4(1 + c2) cos 6ψ

+ s

40

δm

m
{[11 + 7c2 + 10(5 + c2) ln 2] sinψ − 5π(5 + c2) cosψ

−27[7− 10 ln(3/2)](1 + c2) sin 3ψ + 135π(1 + c2) cos 3ψ} (3e)



Gravitational waveforms from inspiralling binaries 579

and for the cross polarization by

H
(0)
× = −2c sin 2ψ (4a)

H
(1/2)
× = −3

4
sc

δm

m
[sinψ − 3 sin 3ψ] (4b)

H
(1)
× = c

3
[(17− 4c2) − η(13− 12c2)] sin 2ψ − 8

3(1 − 3η)cs2 sin 4ψ (4c)

H
(3/2)
× = sc

96

δm

m
{[(63− 5c2) − 2η(23− 5c2)] sinψ

− 27
2 [(67− 15c2) − 2η(19− 15c2)] sin 3ψ

+ 625
2 (1 − 2η)s2 sin 5ψ} − 4πc sin 2ψ (4d)

H
(2)
× = c

60
[(68+ 226c2 − 15c4) + 5

3η(572− 490c2 + 45c4)

−5η2(56− 70c2 + 15c4)] sin 2ψ + 4
15cs

2[(55− 12c2)

− 5
3η(119− 36c2) + 5η2(17− 12c2)] sin 4ψ − 81

20(1 − 5η + 5η2)cs4 sin 6ψ

− 3
20sc

δm

m
{[3 + 10 ln 2] cosψ + 5π sinψ − 9[7 − 10 ln(3/2)] cos 3ψ

−45π sin 3ψ}. (4e)

The notation is as follows. The post-Newtonian expansion in (2) is parametrized by
x ≡ (Gmω/c3

0)
2/3 where ω is the 2PN-accurate orbital frequency of the circular orbit

(ω = 2π/P whereP is the orbital period) andm ≡ m1 +m2 is the total mass of the binary.
(The expansion (2) is valid up to the neglect of 2.5PN terms of order O(x5/2).) In addition
to m we denoteδm ≡ m1 − m2 andη ≡ m1m2/m2. The vectorn along the line of sight
from the binary to the detector defines the inclination anglei with respect to the normal
to the orbital plane. The normal is chosen to be right-handed with respect to the sense of
motion so that we have 06 i 6 π . The notationsc ands are shorthand for the cosine and
sine of the inclination angle :c ≡ cosi and s ≡ sini. Finally the basic phase variableψ
entering (3) and (4) is defined by

ψ = φ − 2Gmω

c3
0

ln

(
ω

ω0

)
(5)

whereφ is the actual orbital phase of the binary, namely the angle oriented in the sense of
motion between the ascending node and the direction of body one (φ = 0 mod 2π when
the two bodies lie alongp, with body one at the ascending node). The logarithmic term in
the definition ofψ involves a constant frequency scaleω0 which can be chosen arbitrarily
(see later). This logarithmic phase modulation was determined in [46, 47] and originates
physically from the propagation of tails in the wave zone. Usingψ instead of the actual
phaseφ simplifies somewhat the expression of the waveform, since it permits collecting in a
single block all the logarithmic terms (to 2PN order). The variableψ is also very convenient
in black-hole perturbation theory, where it permits the resolution of the Teukolsky equation
governing the outgoing radiation up to very high order in the post-Newtonian expansion
[35, 36].

The expressions (2)–(5) solve the generation problem for inspiralling compact binaries
to 2PN order. Up to now, both the plus and cross polarization waveforms were known
for arbitrary masses to 1.5PN order [47, 48], and in the test mass limitη → 0 to 1.5PN
order [32] and 4PN order [36]. Through 1.5PN order equations (3) and (4) agree with
Wiseman [49] (see also [27]) when those formulae are reduced to the circular-orbit limit.
Equations (3) and (4) also largely agree with similar formulae given by Poisson [32] and
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Wiseman [47], however those formulae contained some typographical errors (see [48]). In
any case, the final results given in equations (3) and (4) supersede the previous results. We
have checked that our expressions (3) and (4) in the test mass limitη → 0 are in perfect
agreement with the truncation to 2PN order of the results given in appendix B of Tagoshi
and Sasaki [36]. (The comparison shows that the phase variable used by Tagoshi and Sasaki
is related to ours byψTS = ψ + (2Gmω/c3

0)(ln 2 − 17
12) which clearly corresponds simply

to a rescaling of the frequencyω0.)
In order to obtain the expressions of the waveformsh+(t) and h×(t) as functions of

time one needs to replaceψ and ω appearing in equations (2)–(5) by their explicit time
evolutionsψ(t) and ω(t) obtained from the resolution of the radiation reaction problem.
This problem has been solved in [38, 41] to 2PN order, and we quote here these results for
completeness and later discussion. It is convenient to introduce instead of the local timet

flowing in the experimenters’ reference frame the dimensionless time variable

2 = c3
0η

5Gm
(tc − t) (6)

wheretc is a constant which represents the instant of coalescence of the two point-masses
(at which the frequency goes formally to infinity). Then the instantaneous orbital phase
φ(t) is given in terms of the time variable (6) by equation (4.29) in [38] which reads

φ(t) = φc − 1

η

{
25/8 +

(
3715

8064
+ 55

96
η

)
23/8 − 3π

4
21/4

+
(

9 275 495

14 450 688
+ 284 875

258 048
η + 1855

2048
η2

)
21/8

}
(7)

whereφc is another constant representing the value of the phase attc. (Note that when taking
into account higher-order post-Newtonian approximations (starting at 2.5PN) the phaseφ(t)

no longer tends to a constant whent → tc but instead becomes infinite [45]. In this case
the constantφc is simply determined by initial conditions when the frequency of the wave
enters the detector’s bandwidth.) The orbital frequency is obtained simply by differentiating
equation (7) with respect to time (ω = dφ/dt), hence

ω(t) = c3
0

8Gm

{
2−3/8 +

(
743

2688
+ 11

32
η

)
2−5/8 − 3π

10
2−3/4

+
(

1 855 099

14 450 688
+ 56 975

258 048
η + 371

2048
η2

)
2−7/8

}
. (8)

From (7) and (8) one deduces the phase variableψ using equation (5). Both the expressions
(7) and (8) are valid up to the 2PN order which corresponds formally to the same relative
precision as for the waveforms (3) and (4). However, it is nota priori required for
consistency to have the same post-Newtonian precision in both the waveforms and phase.
On the contrary, one should use in the waveforms (3) and (4) the best available expression
for φ(t) which will be hopefully determined in the future to a much higher order than
2PN (see [45] for the expression ofφ(t) to 2.5PN order). Related to this, note that the
logarithmic term in the phase variableψ(t) although of formal order 1.5PN, is actually of
order 4PN relatively to the dominant term inφ(t) given by (7) (indeedφ(t) − φc is of
order ∼ c5

0 which is the inverse of the order of the radiation reaction effects). Thus the
logarithmic term is in fact currently negligible but must be included when the precision on
φ(t) improves in the future to reach 4PN (even without knowingφ(t) to the 4PN order it
may be a good idea to include this term in the templates).
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It can be readily checked from the expressions (5)–(8) that any change in the phase
variableψ corresponding to a rescaling of the frequencyω0 is equivalent, to the considered
order, to a shift in the value of the instant of coalescencetc, namely, the rescalingω0 → λω0

is equivalent to the shifttc → tc − (2Gm/c3
0) ln λ. Thus a particular choice of the frequency

scaleω0 is physically irrelevant since a different choice can always be absorbed into a
redefinition of the origin of time in the wave zone. (We haveω0 = (1/4b) exp( 11

12 − C)

whereC = 0.577. . . is Euler’s constant andb is a freely specifiable parameter entering
the relation between the wave zone coordinate timet and the harmonic coordinatestH, rH:
t = tH − rH/c0 − (2Gm/c3

0) ln(rH/c0b) whererH is the distance of the source in harmonic
coordinates, see [46].) It could be possible to relateω0 to the source characteristics, choosing
for instanceω0 = c3

0/Gm wherem is the total mass of the binary. However, this mass
will not be known in practice but it will be used as a parameter in the templates to be
varied during the data analysis process, so this choice seems to be somewhat awkward.
For practical purposes it is probably more convenient to chooseω0 in such a way that it is
uniform over all templates. For instance, one can relateω0 to the detector characteristics by
choosingω0/π = 10 Hz where 10 Hz (say) is the seismic cut-off frequency of the detector
[26]. Here we adopt this choice.

3. Discussion

To construct adequate filters for the analysis of inspiralling binary signals, one should
proceed as follows. The theoretical waveformh(t) given as a function of time by the above
formulae (1)–(8) is discretized and its Fourier transformh̃(�) is computed numerically and
stored. Then the ratiõq(�) = h̃(�)/Sn(�), whereSn(�) is the measured power spectral
density of the noise in the detector, defines the Fourier transform of the Wiener filterq(t),
which is to be cross-correlated (either in real time or during the more precise analysis later)
with the raw outputo(t) of the detector composed of the superposition of the actual signal
and of the noise (which is supposed here to be Gaussian). Because of the availability of fast
Fourier transforms the correlation is computed in the Fourier domain using the (discrete)
correlation theorem for the Fourier coefficientsq̃(�) and õ(�). This is repeated for each
set of parameters in the filter until maximization of the signal-to-noise ratio is obtained
yielding the determination of the parameters of the binary (if a signal was really present at
this instant).

For two nonrotating test-masses there are four parameters entering the phase of the
signal (this is true up to any post-Newtonian order). These can be chosen to be the two
mass parametersm andη, and the constantstc andφc. Alternatively one can use the chirp
massM = η3/5m and the reduced massµ = ηm, and/or the arrival timet0 and phaseφ0

at the seismic frequencyω0. The mass parameters may also be replaced by two distinct
post-Newtonian pieces of the (chirp) time left until coalescence starting fromω0 [50]. In
addition, the amplitude of each harmonic of the signal depends on the distancer, on the
inclination anglei, and on the direction of the binary and the polarization angle through
the beam-pattern functionsF+ andF×. Note thatr is the cosmological luminosity distance,
and that the masses are the red-shifted masses which are equal to the true masses multiplied
by 1 + z where z is the binary’s cosmological redshift. This permits the cosmological
measurements proposed in [20–22].

In the case of rotating bodies, there are additional parameters in the signal. Spin–orbit
and spin–spin contributions to the waveform and the phase evolution have been obtained
by Kidder and co-workers [51, 52]. The overall effect of spins on the accumulated phase
during an inspiral was analysed by Blanchetet al [44]. This calculation was made with
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the assumption that the spins of the objects were aligned and perpendicular to the orbital
plane. However, including non-aligned spins makes the waveform and accumulated-phase
calculations considerably more complicated. In this general case the orbital plane can
wobble—thus the inclination anglei in (3) and (4) changes with time—giving rise to an
amplitude modulation and a frequency modulation [53]. However, note that for realistic
inspiralling neutron star binaries (such as the binary pulsar PSR 1913+16 at the epoch when
it finally coalesces) the spin–orbit and spin–spin parameters are expected to be very small,
so that the dynamics of these systems will be dominated by the purely gravitational effects
investigated here (see the discussion in [44]).

In addition to involving rotating bodies, the binary could move on a slightly eccentric
orbit if, being formed late, it reaches the final inspiral stage before the circularization of
the orbit by radiation reaction has fully taken place. This would introduce an additional
term in the phase (7) involving a new parameter which can conveniently [19] be taken to be
e2

0ω
19/9
0 , wheree0 is the initial eccentricity atω0 (recall thate2 evolves in time proportionally

to ω−19/9 in the quadrupole approximation). The general formulae of [40, 41, 54] can be
applied to such non-circular situations.

Another possibility is that general relativity is not the correct theory of gravity because
of, for instance, the existence of a scalar spin-0 field besides the spin-2 metric field. In
this case there would be still another parameter in the signal describing the coupling of the
scalar field with the matter fields. Preliminary analyses of the bounds that could be placed
on the coupling parameterωBD of the Brans–Dicke theory can be found in [19, 25].

More generally, it should be possible to check that the theoretical waveform (1)–(8) is
exactly reproduced in the real signal without prejudice of which theory could be the true
theory of gravity. A simple method to do this consists of parametrizing the templates by
a redundant set of parameters (i.e. by using more parameters than strictly necessary) and
measuring them independently by optimal filtering. In this way one can test whether some
particular terms involving some specific combinations of parameters are really present in
the signal [26]. However, since multiplying the number of independent parameters has the
effect of diminishing the accuracy in their measurement, this method necessitates a high
signal-to-noise ratio.

An application of this method is the detection in the real signal of effects associated with
the tails of waves. Physically the tails come from the backscattering of the linear waves
off the static spacetime curvature generated by the total massm of the binary itself. The
tails are characterized by the fact that they are ‘non-instantaneous’, namely they depend on
the whole integrated past of the source; however, for binary systems the actual dependence
on the past is negligible to 2PN order. Nevertheless, some important signatures of the
tail effect remain in the signal, the most important of which is the term with coefficient
π in the phase of the wave (7), which is directly due to the tails in the radiation reaction
forces. This effect should be easily detectable in the real signal. Other tail contributions
enter the binary’s waveform and are due to the propagation of tails in the wave zone. An
instance is the logarithmic phase modulation in (5) which can be referred to as a wave tail
contribution to the phase (as opposed to the radiation reaction contribution). Even this very
small tail-induced phase modulation (of relative 4PN order) has been shown to be detectable
with a high, but not exceedingly high, signal-to-noise ratio using the above method [26].
This shows how the observations of inspiralling compact binaries could permit new tests of
general relativity in a regime of strong and rapidly-varying gravitational fields.
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