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Abstract, The tails of gravitational waves result from the non-linear interaction between the
usual quadrupole radiation generated by an isolated system (with total mass—energy M), and
the static monopole field associated with Af. Their contributions to the field at large distances
from the system include a particular effect of medulation of the phase in the Fourier domain,
having M as a facter and depending on the frequency as ~ @lne. In this paper we investigate
the level at which this tail effect counld be detected in future laser interferometric detectors. We
consider a family of marched filters of inspiralling compact binary signals, aliowing for this
effect and parametrized by a family of independent ‘test” parameters including M, Detecting
the effect is equivalent to attributing, by optimal signal processing, a non-zero value to M. The
1 — o ergor bar in the measurement of M is computed by analytical and numerical methods as
a function of the optimal signal-to-noise ratio {(SNR). We find that the minimal values of the SNR
for detection of the tail effect at the 1 — o level range from ~ 100 to ~ 2800 for neutron-star
binaries (depending on the type of noise in the detector and on our @ priori knowledge of the
binary), and from ~ 15 to ~ 400 for a black-hole binary with M = 20Mg. It is argued that
some of these values, at least for black-hole binaries, conld be achieved in future generations
of detectors, following the currently planned vIRGO and LIGO detectors.

PACS numbers: 0430, 0480

1. Introduction

The late inspiral and final coalescence stages of compact (neutron-star or black-hole) binary
systems should be routinely observed by future broadband gravitational wave detectors (see
(1,2] for reviews). The estimated number of final coalescence events of neutron stars is a
few per year out 1o a distance of 100 Mpc [3-5]. At 100 Mpc, the first generation of VIRGO
and LIGO detectors [6, 7] might observe the waves with a signal-to-noise ratio (SNR) of order
10 (see, for example, [8]); and future ‘advanced detectors’” could achieve very large SNRs
indeed (see [9] for a discussion),

Optimal signal processing will be used in order to extract the useful gravitational signal
out of the detector noise. This means that the raw output of the detector will be correlated
with a family of matched {or Wiener) filters. A matched filter is a filter whose Fourier
transform is equal to that of the signal divided by the power spectral density of the noise.
A family of filters is required to deal with the unknown parameters of the signal, for
instance, the two masses of the binary. Each filter in the family corresponds to a particular
set of ‘test’ parameters, and by maximization of the correlation over these parameters, one
identifies some ‘measured’ parameters, whose expectation values are equal to the parameters
of the signal (for high enough SNR). This technique requires both that the spectral density
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of the noise in the detector is measured, and that the form of the expected signal is known.
In particular, the accuracy with which the signal is known determines the accuracy of the
measurement of the parameters. It is now recognized [10] that taking higher-order (post-
Newtonian) theoretical corrections into account in the construction of matched filters will be
very important for an accurate measurement of the parameters. This is interesting because
one will be able, as we shall see, to detect higher-order effects predicted by general relativity,

In this paper (which is a continuation of a previous paper [11}), we shall be interested in
the detection of a particelar tail effect, namely the direct post-Newtonian modulation of the
phase of the signal which is induced by the tails of gravitational waves. The existence of
tails is a well established prediction of general relativity. The tails are created by non-linear
interaction between the time-varying multipole moments of the source (for instance, the
quadrupole moment) and its static total mass M [12-19]. Physically, the waves undergo
a continuous scattering, as they propagate outward from the source, off the Schwarzschild
spacetime associated with M. This pheromenon is, in fact, common to the propagation
of any integer spin field, like the electromagnetic field. on the Schwarzschild background
[20-28]. In the gravitational case, the existence of tails is but one aspect of a fundamental
property of the gravitational interaction, namely that its propagation proceeds both on and
within the local light cone, i.e. at any velocity smaller than or equal (on average) to the
velocity of light [29-35].

At large distances from the source (where the detector is located), the contribution of
the wave tail is dominantly of post-Newtonian order £* with respect to the usual quadrupole
radiation, where ¢ is the ratio of a typical velocity in the source and of the velocity of
light. The wave tail, at this order, has been computed in [18,36] and has been shown to
be consistent, in the sense of energy conservation, with a related contribution [37,38] in
the radiation reaction forces acting within the source. The wave tail involves, besides the
total mass M, the components of the quadrupole moment of the source integrated over the
whole interval of time extending from arbitrary remote times in the past up to the retarded
time ¢ — r/c (this reflects the fact that gravity propagates, on average, at any velocity
smaller than or equal to ¢). Thus, the wave tail appears to be a non-local in time, or
*hereditary’, functional of the source’s parameters. By constrast, the lowest-order post-
Newtonian radiation (including the usual quadrupole radiation) is purely local, depending
on the source’s parameters at time ¢ — r/c only. We shall sometimes refer to the latter local
component of the wave as the wavefront.

The Fourier transforrn of the wave tail at large distances from the source has a
particularly simple form derived in [11] (see also [39,40]). This form shows that both
the amplitude and the phase of the wavefront are modified, in the Fourier domain, by small
tail-induced corrections depending on the considered frequency. The modification of the
amplitude of the wavefront has the consequence of modifying (by the famous ‘4x’ term) the
total averaged energy carried away from the source. In the case of an inspiralling binary,
this implies an important ‘radiation reaction’ secular change of the phase of the signal
(see, for example, [10]). This secular change of the phase is of formal order £3, which is
the dominant post-Newtonian order of tails, times the total number of cycles left until the
final coalescence, which is a large number of formal order ¢75. By contrast, the ‘direct’
modification of the phase of the wavefront, as derived in [11, 39,40}, does not modify,
in first approximation, the total averaged energy in the waves. It is therefore merely of
post-Newtonian order &* in the phase of the waveform, being smaller than the ‘radiation
reaction’ tail contribution by a factor £. However, in spite of its smallness, this phase
contribution represents an interesting effect. Notably, it has a characteristic dependence on
frequency ~ elInew. In this paper we consider the practical detection of this effect in future
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lager interferometric detectors, by the method of parameter estimation, As we shall see, the
detection of this effect is challenging but not totally out of reach (at least for black-hole
binaries). The possibility of detecting such a small effect shows the high potentiality of
inspiralling compact binaries for performing tests of the non-linearity of general relativity.

By the method of parameter estimation we simply mean the estimation of the value
of some parameter in the signal, independently of the values of the other parameters, by
means of optimal signal processing. In our case, the convenient parameter is the total
mass—energy M of the source which multiplies the tail contribution. This parameter is not
independent, in the real signal, of the parameters of the wavefront since it is equal, for
instance, to M = M3?y~%2 where M and w are the usual ‘chirp’ mass and reduced
mass parametrizing the wavefront. However, in the filters, we can consider the total mass
M multiplying the tail contribution as a test parameter which is independent of the other
parameters. Maximizing the correlation by independently varying all these parameters,
including M, yields a test of the existence of the tail contribution. Indeed, if this contribution
does rot exist, the optimal filter will be able to find a value of M which is compatible with
zero, together with some definite values of the other parameters (e.g. the parameters AM
and p). On the contrary, if the contribution does exist, the optimal filter will measure a
non-zero value of M, and it will be checked that this value is eventually consistent with the
measured values of the parameters of the wavefront (see [42] for discussion).

With M considered as an independent parameter in the matched filters, we can compute,
in the limit of high SNR, the anticipated one-sigma precision of its measurement (and thus
of the measurement of the tail contribution itself) using the theory of the covariance matrix.
Let us denote by ¢ = Cqo the variance of M, chosen to be the 00 component of the
covariance matrix C,g, where the labels o, 8 range over all the parameters. Then the tail
contribution will be detected at the 1 — ¢ confidence level when oy gets smaller than the
value of M itself. In this paper we find that this happens when the optimal SNR of the signal
is larger than a minimal value ranging from ~ 100 to ~ 1000 in the case of a model of white
noise {depending on the number of independent parameters which are used in the filtering
process}, and ranging from ~ 280 to ~ 2800 in the case of a model of ‘coloured’ noise
appropriate for shot noise in the standard recycling configuration of a laser interferometric
detector with Fabry—Perot cavities. (The sensitive bandwidth of the detector is assumed to
be 100-2000 Hz.) These figures are for a neutron-star binary with M = 2.8M. For a
black-hole binary with M = 20M_, the situation is much improved with minimal values
of the SNR ranging from ~ 15 to ~ 140 (white noise), and from ~ 40 to ~ 400 (coloured
noise).

We also perform a numerical simulation of the detection of the tail contribution,
assuming that a preliminary (non-optimal) analysis has been performed on-line, yielding
some preliminary values of the parameters of the wavefront. For simplicity, in this
simulation we only use the minimal number of parameters. We construct a lattice of
filters by the method of [43,44] (one dimension in the lattice corresponds to the total mass
M), and we filter through it the output of the ‘detector’, composed of a known signal
added to simulated Gaussian noise. By repeating the filtering process for a large number
of realizations of noise, we obtain the distribution of the measured values of M, and, in
particular, the standard deviation of the measured M around its mean. When the optimal
SNR increases, the mean value tends to M, and the standard deviation tends to zero. Using
the same criterion as above, we obtain minimal SNRs for detection of the tail contribution
at the 1 — o level which are in good agreement with the analytical computations.

We think that the detection of the “direct’ tail-induced modulation of the phase of the
wavefront is challenging but could be within reach in future laser interferometric detectors,
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at least in the case of black-hole binaries. The number of coalescences of black holes is
not known, but could be comparable with the number of coalescences of neutron stars [4].
Let us assume for discussion that three black-hole coalescences ocour per year out (o a
distance of 200 Mpc, and furthermore that the currently planned VIRGO and LIGO detectors
will observe these events with a SNR ~ 10 (a reasonable value for black holes). Then, we
can roughly estimate that VIRGO and LIGO will observe 3(%)3 = == events per year with
a SNR larger than ~ 40, which is the least SNR required to detect the tail contribution in
the case of black-hole binaries. This rate of events is too small, but it drastically depends
on the statistics of events and on the shape of the detector noise spectrum. With the same
assumptions concerning the statistics of events, we find that the advanced LIGO detector
should detect tens of black-hole coalescences each year with a SNR larger than 40 (see, for
example, equation (5.5) in Finn and Chernoff [9]).

The plan of this paper is as follows. In the next two sections we sumunarize some
formulae concerning the generation of gravitational wave tails (section 2), and the theory
of optimal signal processing (section 3). Section 4 is devoted to the analytical computation
of the variance of the total mass M entering the tail contribution, and section 5 to our
numerical simulation of its detection. The paper ends with an appendix.

2. Generation of gravitational wave tails

2.1. Case of a general isolated system

This subsection is a review of the relevant formulae (taken from [11, 36]) concerning the
generation of gravitational wave tails by an isolated system, at large distances from the
system where the detector is located. We shall denote by A(r) that particular combination
of the components of the wave which is directly felt by the detector {e.g. £(t) = §L{#)/L
is the relative variation of the arms’ length of a laser interferometric detector), and we shall
refer 10 it as the gravitational wave, or signal.

The wave A(z) is given, at the post-Newtonian order &> ~¢~ beyond the ‘Newtonian’
quadrupole radiation (where ¢ is the ratio of a typical velocity in the source and of the
velocity of light), and at first order in the inverse of the distance r from the source, by the
expression [36]

26M [, t—¢'\ 117 d%y
h(8) = ho() + —5— - dr |:1n(7)+1—2] = - (2.1)

This expression is derived in a ‘radiative’ coordinate system, covering the regions at large
distances from the source, and defined in (2.4) below. Throughout this paper, we shall
work consistently with the precision at which (2.1) is valid. That is, we shall consistently
neglect all terms of post-Newtonian order O(s*) = Q(¢™*) beyond the quadrupole radiation,
andfor of order O(r~?) in the inverse of the distance from the source. Thus, for simplicity’s
sake, we shall not mention in (2.1), and in other formulae below, the neglected terms O(e*)
and/or O(r~2).

The wave k() is composed of two distinctive parts. The first part s9(t) can be referred
to as the ‘wavefront’. It is defined by the equation

G &Ky
ho(ty = S {Flpipy — qiqp) + Fx(pig; + Q’in)}—dr—zi {t—rie,m) 2.2)
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where we denote by 72, p, ¢ an oriented orthonormal triad, with n the unit vector directed
from the source towards the detector and p, g two unit polarization directions in the plane
orthogonal to 2. The two coefficients /. and F,, denote the standard detector beam-pattern
functions which are, for instance, given, in the case of a laser interferometric detector, by
(104) of [1]. The tensor K;;(u, n), whete u =t —r/c is the retarded time, is related to the
(trace-free) multipole moments of the source (mass-type moments J;;(x), fi;;(u), ... and
current-type moments Jy; (u), Jije(#),...) by

1
Kij(u,m) = Iy(u) + ;[%nu,-f,-‘;(u) + Eeg Tk Gony)

1 2 1
+ Lm0 + foue By omn]

+ c%[ﬁ_lﬂnknfnm]ifr%m(u) + B S @RI (2.3)
(We denote ¥ (u) = d*I(u)/du" and Ty = %(T,—,- + T%).) The multipole moments of
the source are given at retarded time # by explicit integrals extending over the compact-
supported stress—energy distribution of matter in the source at the same retarded time u.
The expressions of the moments of the source are given in [46,47] (see also [11,36]). In
the limit ¢ — co, the tensor (2.3) reduces to the usual Newtonian quadrupole moment of
the source. '

The second part in the wave A(¢), which is purely of post-Newtonian order £, can be
referred to as the ‘wave tail’. As is clear from its expression, the wave tail is, in contrast
with the wavefront, a non-local in time functional of the stress—energy tensor of the source,
depending on its values not only at the simply retarded time & = ¢ — r/c, but also at all
times anterior or equal to 1. (Note that the precision given by the first term in (2.3) is
sufficient to compute the wave tail, which is already of small order £°.) Subject to weak
conditions concerning the emission of radiation at very early times ' — —oo, one can
easily show that the wave tail in (2.1) is given as a convergent integral (see [11,36, 37]).
We have chosen, following [11], to include the term corresponding to the constant }—; in
the wave tail although this term is, in fact, a local functional of the source. The constant b,
in the logarithm of the integrand of the wave tail, is an arbitrary positive constant having
the dimension of time. It enters the relation between the radiative coordinate system ¢, r
used by the experimenters at large distances from the source and the harmonic coordinate
system fy, ry covering the source:

2GM
t =ty - —In () (24a)
re=ry. (2.4)

By substituting (2.4) into (2.1), we eliminate the dependence on the constant & [36]. (Note
that the value of the constant —}% depends on the coordinate system chosen in (2.4) to cover
the source. For instance, the value is % instead of % if we use in (2.4) Schwarzschild
coordinates ts, rs instead of harmonic coordinates ¢y, ry; compare [11] and the work of
Poisson [39].)

The Fourier transform of the gravitational wave h(z} has been derived in [11]. Let us
denote by A(w) and ho(w) the Fourier transforms of A(z) and of its wavefront fg(t) (where

w = 2nf denotes the angular frequency):

+a0 +oo
h(w) = f dz h(r)e holw) = f dt ho(t)e™ . (2.5)

- -0
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Since k(z) and hg(t) are real, we have 5(—&;) = E*(w) and ﬁo(—w) = Ea(w) where *
denotes the complex conjugation. Then, by taking the Fourier transform of (2.1), one
obtains

- - 2GM
h{w) = hglew) 11 + = %:rrlcu{ + iw ln(2|w|b’)]] (2.6

where |w| denotes the absolute value of w, and where the constant b’ is related to the
constant & by

b =bexp[C -] @7

with C denoting the Euler constant C = 0.577.... (Note that the expression (2.6) is only
valid for low frequencies @ such that GMw/c? is of small post-Newtonian order O(g®).)

The tail-induced corrections in (2.6) imply a modification of both the amplitude and
the phase of the wavefront in the Fourier domain. In particular, the modification of the
phase of the wavefront, as given by the imaginary part of the brackets in (2.6), introduces a
new effect in the case where the radiation contains more than one frequency in the Fourier
domain (see [111). This effect can be rigorously analysed when the radiation spectrum is
composed of several well separated wavepackets. Two wavepackets, centred around two
different frequencies «y and w; (and belonging to the ‘same’ wave), propagate with the
same group velocity, but their relative positions are slighly shifted along the line of sight.
(The position of the wavepacket is the position of its maximum of amplitude in space.)
They differ by a small guantity equal to 2GM/c? times the difference of the logarithms
of their central frequencies w; and w,. Put another way, the two wavepackets arrive at a
given distance from the source with a small relative delay equal to RGM/c®) In{w /w2),
with the wavepacket corresponding to the Iower frequency arriving first. In a sense, only
this effect should be regarded as the tail effect.

In this paper, we shall make a definite choice of the constant &' appearing in (2.6) (and
thus a choice of a particular radiative coordinate system}. We shall relate &' to the ‘seismic
cut-off’ of a laser interferometric detector, defined to be the frequency «w; below which the
terrestrial seismic noise prevents any detection, by posing

1

b= —.
2w

(2.8)
(In a more general situation, we can simply think of w, as being a typical frequency at
which the detector is operating.)

2.2, Application to inspiralling compact binaries

Recall that the wave generation formalism of [36], on which the expression of the wave tail
in (2.1) is based, is valid for systems of compact objects like inspiralling compact binaries,
which can be modelled by two point masses moving on an inspiralling circular orbit. We
shall consider for this application only the dominant frequency component of the radiation,
equal to two times the orbital frequency of the binary. In this case, the wavefront fg(z) is
of the form

ho(r) = A(R2(1)) cos[p(1)] (2.9)

where $2(2) is twice the orbital frequency, ¢(t) denotes the instantaneous phase of the signal,
satisfying de(t)/dt = ¢(2) = Q(1), and A(S2(2)) is some instantaneous amplitude.
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The Fourier transform of the wavefront (2.9) can be computed by means of the stationary
phase approximation method, valid in the ‘adiabatic’ regime of the inspiral of the orbit
during which the relative changes of the instantaneous frequency £2(¢f) of the radiation in
one corresponding period are small, for example, Q) < Q2. As a result, we have (see

°D

. [
Fo(w) = -;- -Q(iT)A(w) exp (i — o(T) — Lz} (2.10)

where T denotes the particular iqstant at which Q2(T) = w. The expression (2.10) is written
for w > 0; for @ < 0, we use hyp(w) = hj(—w). Now the rate of inspiral of the orbit is
governed by radiation reaction effects (in reaction to the emission of gravitational waves),
or equivalently by the energy balance equation dE/dt = —L relating the orbital binding
energy E of the binary (at some frequency £2) to the total averaged power, or luminosity
L of the gravitational wave emission (at the same frequency §2). From this equation we
deduce the quantities needed to compute (2.10), namely

1 1 dE

am - Twa® *1b
and
Ry —QdE

We denote by 1, the instant of coalescence (at which the frequency goes formally to infinity),
and by g, the corresponding final phase.

The binding energy E is known from the eguations of motion of two point masses
moving on a circular orbit, while the luminosity £ is computed by differentiating, squaring
and averaging the gravitational field at large distances from the source. We shall use the
expressions for E and £ which are valid with the inclusion of all post-Newtonian terms up
to &*. These expressions are

GMQ\*? 3 cM\*?
E(Q):—%p,(ﬂ( 53 ) {1—}-(—2—11—21))( ¥ ) (2.13)
where @t is the reduced mass of the binary and v = p/M, and

5 10/3 23
E(Q)z?’?‘_c(GMQ) {1+(_w_ﬁu){GMQ) +2nGMg} 2.14)

3G 23 36 1277y 2¢3 ot
where M = u*3M?%/5 is the chirp mass of the binary. The post-Newtonian correction £°
in £ is directly due to the real part of the brackets in (2.6), i.e. to the amplitude modulation
of the wavefront induced by the tail itself [39]. We shall refer to this correction £* as the
‘radiation reaction’ tail contribution.

By inserting (2.13) and (2.14) into (2.11) and (2.12) we obtain an explicit expression for
the Fourier transform (2.10) of the wavefront. A priori, this expression contains a ‘radiation
reaction’ tail contribution in both its amplitude and its phase. However, inspection of (2.11)
and (2.14) readily shows that the ‘radiation reaction’ tail contribution in the amplitude of the
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wavefront is, in fact, exactly cancelled by the real part of the brackets in (2.6). Accordingly,
we find it copvenient to write the wave (2.6) in the form

oMo ln(lw]/ws)} 2.15)

&3
where we retain in the brackets only the ‘direct’ tail-induced modulation of the phase (with
our choice (2.8) for the constant ). Assuming, as usual, that the post-Newtonian corrections
in the amplitude of Hp(w) are negligible, we can now use

G 4G 3
Al) = A—L:" ( T“’) 2.16)
[as [ag

h{w) = Holw) [1 +i

where the amplitude parameter .4 is given by
c
A= — {F2(1 + cos™1)? + 4F cos? SR VTP ; 2.17)

where F,. and F, are the detector beam-pattern functions appearing in (2.2), and : is the
angle between the line of sight from the source to the detector and the normal to the orbital
plane. Finally we obtain

Hy(w) = §v/5m Ap~ 1207778 exp {i[wt, — o — 37 + 907 + 207! +yo ]} (2.18)
where for later convenience we have introduced the parameters

30 &\
"=3 (4GM) -
A= (18 4 1) (i) (2.19b)
48 V336 4 G}-&
3w ¢\
V=T (4GM) ‘ (2190

The ‘radiation reaction’ tail contribution in (2.18) is the term y»~%3. Note that for spinless
objects, the parameter ¥ is not independent of » and A. However, when the two (compact)
stars are rotating, y receives an additional contribution 8 depending on the two spins of
the stars and on the total angular momenturn of the binary [51]. This contribution § can be
assumed to be constant, and modifies y as follows:

3 S\
r=§(ﬁ—4n)(4GM) . (2.19¢")

In this case, ¥ is independent of the other parameters 7 and A,

Finally, let us consider the “direct’ tail-induced modulation of the phase of the waveform
in the brackets of (2.15), i.e.
26Mw

o3

As is clear from (2.15), (2.18) and (2.194), this phase modulation is smaller by a factor
of order 5" ~&° than the ‘radiation reaction’ contribution of the tail in (2.18). However,
#(w) has a very distinctive dependence on frequency (~w Inw) which could make it more
easily identifiable in the real signal than the ‘radiation reaction’ tail contribution. Oan the
other hand, the ‘radiation reaction’ contribution is plagued in the real signal with the spin~
orbit contribution 8 (see (2.19¢"), and it is not clear how it could be detected without
ambiguity. Thus we shall focus our attention on the ‘direct’ tail-induced contribution §{w),
and shall investigate the level at which it could be detected in future gravitational wave
interferometers.

B{w) =

In(e/evs) . (2.20)
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3. Summary of optimal filtering technigques

This section 15 intended to provide well known formulae about the theary of optimal filtering
{(see the book of Wainstein and Zubakov [45] and, in the context of gravitational radiation,
[1,43,44,48-50]), which we shall use in sections 4 and 5. The raw output of the detector
o(r) is the superposition of the useful signal A(r} given by (2.1) and of noise n(¢):

o(t) = h(t) +n(t}. (3.1

The noise is assumed to be a stationary Gaussian random variable, with zero expectation
value

n{ty =0 (3.2)
and with (supposedly known) frequency-dependent power spectral density S,(w) satisfying
Al (@) = 2m8(w — &) Sp{w) (3.3)

where 7{w) is the Fourier transform of #(f) in convention (2.5). In (3.2) and (3.3), we
denote by an upper bar the average over many realizations of noise in a large ensemble of
detectors. From (3.3), we have 5(w) = S;(w) = Sp(—w) > 0.

Looking for the useful signal #(r) in the output of the detector o{t), the experimenters
construct the correlation ¢(¢) between o(?) and a filter g(z), i.e.

+o0
clt) = f dt'o(tHg(t + tH (G4

and divide c¢(¢) by the square root of its variance {or comelation peise). Thus, the
experimenters consider the ratio

+oo o % iwt
olgltty = ——5 _A31/2m) dw d(@)g(w)e

= (3.5)
@D - ([I2(1/20) do Sy@)|F(@)R)

where d(w) and §(w) are the Fourier transforms of o(¢) and g(¢). The expectation value
(or ensemble average) of this ratio defines the filtered signal-to-noise ratio (SNR)

—T;o (1/27) dew b (@) (w)e®*
(f—-:?(li’;?ﬂ) dew Sh("-’),&{w}[z)]m :

The optimal filter (or Wiener filter) which maximizes the SN® (3.6) at a particular instant
t = 0 (say), is given by the matched filtering theorem as

plgl@r) = olql(t) = (3.6)

- h(w)
W)=y ——— 3.7
glwy=y 5o (@)
where y is an arbitrary real constant. The optimal filter (3.7) is matched on the expected
signal h(w) itself, and weighted by the inverse of the power speciral density of the noise.
The maximum SNR, corresponding to the optimal filter (3.7), is given by

(e @R\ (38)
=\ 2t Sy = A |
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This is the best achievable SNR with a linear filter. In (3.8), we have used, for any two real
functions f(¢) and g(2), the notation

[ do f@)Fw)
(f.5) = f s

for an inner scalar product satisfying {f, g} = {f, )" = {g. f}.

In practice, the signal A(7) or h(w) is of known form {given by (2.1) or (2.6)) but
depends on an unknown set of parameters which describe the source of radiation, and are to
be measured. The experimenters must therefore use a whole family of filters analogous to
(3.7) but in which the signal is parametrized by a whole family of ‘test’ parameters which
are a priori different from the actual source parameters. Thus, one will have to define
and use a lattice of filters in the parameter space {see section 5). The set of parameters
maximizing the SNR (3.6) is equal, by the matched filtering theorem, to the set of source
parameters. However, in a single detector, the experimenters maximize the ratio (3.3)
rather than the SNR (3.6), and therefore make errors on the determination of the parameters,
depending on a particular realization of noise in the detector. If the SNR is high enough, the
measured values of the parameters are Gaussianly distributed around the source parameters,
with variances and correlation coefficients given by the standard covariance matrix, the
computation of which we now recall. Since the optimal filter (3.7) is defined up to an
arbitrary multiplicative constant, it is convenient to treat separately a constant amplitude
parameter in front of the signal (involving, for instance, the distance of the source). We
shall thus write the signal in the form

(3.9

By A, de) = A k(w; Aa) (3.10)

where A is an amplitude parameter given, for instance, by (2.17). The function & depends
only on the other parameters, collectively denoted by A, where the Greek label « ranges for
later convenience on the values 0, 1, ..., N. The family of matched filters (or ‘templates’)
we consider is defined by

RICTP

—_— 3.11
Sylew) @10

Gl the) = ¥

where (A, 15 a set of test parameters and ' is arbitrary. (In section 5 we shall make a suitable
choice of ' so as to simplify the numerical simulation.) Note that these parameters are
assumed to be all independent, even though the source parameters A, may not be so. By
substituting (3.11) into (3.5) and choosing ¢ = 0, we get, with the notation (3.9),

{0, k(:A))
{k (A, k(AN
(Note that & is, in fact, a function of both the parameters A, and \A,.) Now the experimenters

choose as their best estimate of the source parameters A, the measured parameters yi, which
among all the test parameters A, (independently) maximize (3.12), i.e. which satisfy

do
LI

Assuming that the SNR is high enough, we can work out (3.13) up to the first order in the
difference between the actual source parameters and the measured ones,

g(A) = (3.12)

) =0  a«=0,1,...,N. (3.13)

Shy = Ay — mhe - (3.14)
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As a result, we obtain

3k {n, 3k
dhg = —(n, — h, — 3.15
¥ "‘3{ { axﬁ)+<h,h>< alﬁ)} G
where a summation is understood on the dummy label 8, and where the matrix Cyg (with
o, B8=0,1,..., N) is the inverse of the Fisher information matrix
ah Bk 1 ah ah
={— —} = ——{h, — b, — .
Des (axa' w) B ( aaa> ( a&s) 410

(we have CopDgy = 8y ). In the right-hand sides of (3.15) and (3.16), the signal is equally
{with this approximation} parametrized by the measured or actwal parameters. Since the
noise is Gaussian, so are, by (3.15), the variables dA,s (indeed, the §A,s result from a
linear operation on the noise variable}. The expectation value and quadratic moments of

the distribution of these variables are readily obtained from the facts that {n, f} = 0 and

{n, f)in, g} = {f, g} for any deterministic functions f and g (see (3.2) and (3.3)). We
then obtain

e =0 (3.17)
Bhablg =Cop. (3.18)
Thus, the matrix Cyop (inverse of (3.16)) is the matrix of variances and correlation coefficients,
or covariance matrix, of the variables §2,. The probability distribution of the &A,s reads as

P(8rg) = exp {—1Dup 62adip) (3.19)

1
V@)Vl detC
where detC is the determinant of C,g. A similar analysis can be done for the measurement
of the amplitude parameter .4 of the signal.

4, Analytical investigation of the detecti_on of the tail contribution

The gravitational wave signal h(w) is now explicitly supposed to be of the form (2.15),
i.e. constituted by Ho(w) (that we shall slightly abusively refer to as the wavefront) and
corrected by the tail-induced phase modulation (w), the latter having in factor the total
mass M of the source. It is convenient to assume that M itself is one of the parameters
Aq of the signal. We shall keep the value 0 of the Greek label « for the total mass M, so
that Ay = M, and shall introduce Latin labels i, j = 1, ..., N for the parameters in Hy(w).
Thus we denote A, = {M, A;} and write (2.15) as

2CMw
o

h(w; A, Ay) = Holw; A, 1) [ 1+i 1n(|w|/cos)} (4.1)

where
Ho(w; A, 3) = A Bolw; 3) . (4.2)

Evidently, the total mass M may not be independent, in the real signal, of the parameters
A;. However, in the method of parameter estimation, it is important to take the correlation
of the output of the detector with a family of matched filters (3.11) depending on test
parameters Ay = {{M, 1A;} where (M is independent of the other parameters (A;. This way
of proceeding permits a zest of the existence of #(w) in the real signal.
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4.1. Computation of the variance of M

The covariance matrix of the signal Cyg, inverse of the matrix Dyg defined by (3.16), will
give us the level at which it will be possible to detect the tail contribution in {4.1}. The
differentiation of (4.1) with respect to the parameters M and %; is easily performed, and
yields

18k _ 26w s

Fanr =i Indlel/w) +0(G%) (4.3a)
10k _ 1 8Hy

Fon S o (4.3b)

For the sake of clarity in the derivation of the covariance matrix, we indicate by O(G")
some negligible terms of the order of » times the tail term (which carries the constant G
in front). In terms of the post-Newtonian parameter £ we have O{G") = O(*"). With the
help of (4.3), we can work out the components of Dyz at leading order in G (i.e. at leading
order in & following our notation). We find, separating the label & = 0 corresponding to
the parameter M from the Latin labels £, j corresponding to the parameters of the wavefront
{and showing explicitly the dependence in G/c%),

Dy = — 'D‘” +O(G?) (4.4a)
Dy = Eq D4 oGYH (4.4b)
Dy =D +0(G) (4.4¢)

where the coefficients are given by the formulae

+o0 dew wZ o
2 _ 21,2
DR =4 [ o I o ) 45)
M = 21m f T _duo T (o ) ln(a)/w ) (4.6)
1] o S};(CU) 0 s .

(Im denotes the imaginary part), and

8Hy 8Hp\ 1 3 Hy 3 Ho
DY = Ho, Ho, 4.
4 (ax, ax) p{,("aA)("ax) @7

As we see, D,-(J?’ is the information matrix of wavefront Hy alone, whose inverse, Cf;” say,

i§ the covariance matrix of Hp. In (4.7) we denote by pp the optimal SNR associated with
Ho, 13

po = {Hy, Ho)? . (4.8}
The matrix (4.4), in which we have {(4.5)—(4.8), most now be inverted. We perform

the computatmn at leading order in G /¢ and express the result in terms of the coefficients
D@) and 'D,Jl given by (4.5) and (4.6), and in terms of the components of the covariance
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matrix CS-J) of the wavefront, satisfying C?)D}? = & where Dg.)) is given by (4.7). A short
computation gives

c® I
Coo = G— ‘1)(2) (I)D(UC(O} +0(%) (49@)
S —DPc®
= Tl
Coi = 5 {D‘” —pip0em + O(G)] (4.98)

(0} On “im “ijn
Cij =Gy + D(z) PODICD +0(6). (4.9¢)

We can then express this result in terms of Dgg and Dy; (and still Cm}) rather than in terms
of D(%) and Dm This reintroduces further negligible terms in G/c3. Howcver now that the
derivation of the result is done, we simply skip all indications O{G") of negligible terms.
Hence we obtain, with the required precision, the final expressions

1
Cop = ——————— (4.102)
Dy — 'Dok'Dn:C;E?)
~Do;
Cor = ———— oo (4.100)
00 = 0k 0]
Dom DorCin Ciy’
Cy = O + ——min (4.10¢)

T Dy — DDy

These expressions, together with the explicit formulae for Dyg and Dy; computed from (4.5)
and (4.6), and the knowledge of the covariance matrix C,.(J?) of the wavefront (inverse of
(4.7)), give the variances and correlation coefficients of the vartables §iy = Ay — phe. In
particular, by integrating the probability distribution (3.19) over the variables §A; = A; —mA;
of the wavefront, we obtain the probability distribution of the variable

SM=M—nM (4.11)

which is the difference between the actual and measured total masses parametrizing the
wave tail:

PEM) =

2
exp{-—%] 4.12)

7
2nol, 2oy

where the variance o2 (square of the standard deviation o) is given by

1
Doo — D DosCYy

=Ly = (4.13)
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4.2. Application to inspiralling compact binaries

To compute oy for inspiralling compact binaries, we need to substitute into (4.13) the
expression (2.18) of the wavefront Hy, which is (for w > 0)

Ho(w) = $v/5m An~ 2w exp {i[wt, — v — 1w+ ™ + 2™ + yw“m]} .

(4.14)
The parameters 7, A, and ¥, given by (2.19), are associated respectively with the dominant
radiation reaction, with the post-Newtonian correction £2 involving the mass ratio v = /M,
and with the post-Newtonian correction &> involving the spin-orbit term 8 and the ‘radiation

reaction’ tail contribution. The SNR gy associated with (4.14) is readily obtained by inserting
{4.14) into (4.8). We find

P = (ho, hot = A% faps 4.15)

where we use the definition, for any «, of the moments

% dw @™
- , 4.16
f fo 5o @) (4.16)

The covariance matrix Cﬁ-’) of (4.14), inverse of (4.7), is now computed. A priori, the
wavefront (4.14) contains five independent parameters relevant to the construction of filters,
which are A; = {n, ¥, &, &, v}. However, if we know a priori that the spins of the stars
are negligible, then we can consider only the four parameters A; = {7, @, &, A}; and if,
furthermore, we know some relation between the two masses of the binary (for instance
that they are nearly equal), then A; = {n, @, ¢} is sufficient. Since the level at which
the detection of 9(w) becomes possible strongly depends on the number of independent
parameters in the filtering process [53], we shall perform the computation for the three
cases where we consider 3, 4 or 5 independent parameters in (4.14) (totalizing with M
in front of the tail contribution 4, 5 or 6 parameters in the complete waveform). The
logarithmic derivatives of (4.14) with respect to the A;s are given by

1 8f, 1 . s

— i = —— + jw (4.17a)
Hy dn 2n

1A _ (4.175)
Hy e

L, (4.17¢)
Hy 1

1 8Hy . _,

2 %fo _ 4.17d
G iw (4.17d)
L (4.17¢)
Hy dy

By substituting these expressions into (4.7), we obtain the covariance matrix in the form

co = f12 g (4.18)
]
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where pg is given by (4.15), and where the matrix Fj; is the inverse matrix of the matrix
E;; defined in terms of the moments (4.16) by

Jizs —fa i
Eij= ( =fa S —fm) (3 parameters) (4.19a)
i —fas fip
(o —fi f fisys
Ejj = —fa Hp s —fon {4 parameters) (4.195)

VB =fas hp fip
\fisp —Ffoz s Fop

(fn/s — fa S fis;z Sl
- s —faz —fions —f
Ej=\| i —fas fip i ) (5 parameters) . (4.19¢)
hisp —fupy fis fupn fa
\fus —f fa fa fup

The indices {, j range on the parameters 7, @, t;, A, ¥ in that order (we have Fj; E; = §,).
Finally, we need to compute the quantities Dy and Dy; entering the expression (4.13).
These quantities are given with the required precision by (4.4){4.6). They are readily
evaluated with the help of (4.14) and (4.17), and we find

4G? p§
Doy = — —h . (4.2
o0 =% i 1/3 (4.202)
_2G o5
Dy = 4200
W= E L ( )
where we have, respectively for 3, 4 and 5 parameters,
83
83 _‘gi s —84/3
Gi=|-gs3 ), g 3{ ' gz |- {4.20¢)
£1/3 87/3 8713
/ 82
In these expressions, the new moments g, and A, are defined by
TR dw ™™ 2 do o™
= In(w/o, hy = In® . 4.21
8 ./o Se(y @19 e /o Sp@) /) #21)

By inserting (4.20) and (4.18} into the expression (4.13) of the variance oﬁ,, we then obtain
our looked-for formula

g c® f7;3 1
4G2 pD hiys — F GGy ( )

(where we sum on repeated indices in F;;G;G;). As a check of the correctness of this
formula, we can show that crf, is independent of the particular choice of radiative coordinate
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system we have made in (2.8), i.e. is independent of the value of the frequency w,. From
(4.16) and (4.21), we have 8hy/8w; = —~2g,/w; and 3g, /3w, = — fy fws, from which we
deduce 3[h1/3 — F;;G:G;1/3es = 0. Thus, we have 3(o)/dw; = 0.

The variance o7 obtained in (4.22) is valid for any spectral density of noise Sy(w).
In order to compute it, we use some simplified models of noise in the detector. First we
suppose that S;(w) is infinite below the seismic cut-off &, and above some upper cut-off
wm

Sp(w) = 00 W< W, O ©>ay. {4.23)
Then we choose, within the bandwidth [ws, @], either a model of white noise, i.e.
Sp(e) =S ws L o<Wy (4.24)

where § is some constant, or a2 model of ‘coloured’ noise appropriate for shot noise in laser
interferometric detectors that employ Fabry-Perot cavities and use standard recycling, i.e.

2
Sp(w) = Kax [1 + (—;%) ] ws K © < Wy (4.25a)

(see, for example, [1]). The constant K in (4.25a) depends notably on the laser power
and on the reflectivities of the end mirrors. (We shall not need the expression of K nor
the value of §.) The frequency w; in (4.25a) is the so-called ‘knee’ frequency, and can
be chosen by the experimenters at will. We adopt here the value of wy that maximizes
(all other parameters remaining fixed) the SNR (4.15), i.e. that maximizes the moment fo3.
This value is known [41] to be

wy = 1.44ew; . {4.25b)

The relevant moments f, g and h, are computed using the two models of noise (4.24)
and (4.25), and substituted into (4.22). It is immediately seen that the standard deviation
oy will take the form

o}

oy =4 (4.26)

G oot

where a4 is a pure dimensionless number, depending only on the type of noise in the
detector (white or coloured) and on the ratio @, /w;. The number a is composed of many
residual dimensiconless integrals resulting from the various moments fu, 2o and h,. We
have computed its numerical value in the case w,/w; = 20 (for instance w, /27 = 100 Hz
and w, /27 = 2000 Hz as will be used in the simulations of section 5), and obtain

a=0284, 2.21, 846 (white noise; resp. 3, 4, 5 parameters) (4.27a)
a =240, 6.46, 24.26 (coloured noise; resp. 3, 4, 5 parameters). (4.27b)

The standard deviation oy as given by (4.26) is inversely proportional to the SNR, and
also inversely proportional to the lower cut-off w;. Note that when we improve the detection
by lowering s, the standard deviation oy decreases, contrary to what could be expected
from (4.26), and thus the measurement of M becomes more precise. This is of course due
to the fact that the SNR pp also depends on w;. For instance, in the case of an inspiralling



Signal analysis of gravitational wave tails 2823

binarg' and of the model of noise 54.25) {with fixed ratio w,/w;), pp depends on w; like
ws /% and so Ootos varies like g Y8 \which increases when w, decreases.

For a high enough value of the SNR, the precision o in the measurement of M becomes
smaller than the value of M itself. When this occurs, we are able to attribute to the total
mass M a definite non-zero value at the one-sigma confidence level, and we are able to
detect the presence of #(w) in the signal. Thus, we adopt the condition oy < M as a
criterion to decide that 6{w) is detected (at the one-o level). By (4.26) this condition reads
as

o3

. 428
GMw, ¢ )

Poza

Note that (4.28) can be fulfilled for reasons owing both to the source and to the detector.
For instance, it can be true because the mass of the source is very large or because the
source is located very near. It can also be true because the seismic cut-off of the detector
is very low. In the case of an inspiralling binary made of two neutron stars with total mass
2.8Mq, with @y = 2 x 100 Hz and the numerical values (4.27) of a, we obtain

po = 97, 254, 973 (white noise; resp. 3, 4, 5 parameters) (4.29a)
Po = 276, 743, 2790 (coloured noise; resp. 3, 4, 5 parameters). (4.295)

In the case of a black-hole binary with total mass 20M, we obtain

po = 13, 36, 136 (white noise; resp. 3, 4, 5 parameters) (4.30a)
Po = 39, 104, 390 {coloured noise; resp. 3, 4, 5 parameters). (4.30b)

Note that the SNR pg in (4.28)-(4.30) can equally well be replaced by the optimal SNR p;
see (A.11) in the appendix.

The prospects, opened by the estimates (4.29) and (4.30), of detecting the phase
modulation &(w) have been discussed in the introduction. We now turn to a numerical
simulation of the detection of the tail contribution in a real experiment. For simplicity, we
consider only the cage of three independent parameters in the wavefront. This corresponds
to the case for which we know a priori that the spins of the stars are negligible and, for
instance, that the two masses are nearly equal.

5. Numerical investigation of the detection of the tail contribution

5.1. Construction of a lattice of filters

The question of the construction of a lattice of matched filters (or ‘templates’} for the
detection of 8(w) needs to be settled before the simulation. The templates are given by
(3.11), i.e.

, k(w; the)

51(0) (5.1)

Glw; he) =¥

They depend on a set of test parameters Ay, where the label o ranges from 0 to &, which
are assumed to be all independent of each other. Following [43, 44], we choose the arbitrary
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constant ¥’ in (5.1) to be such that the noise power of the filtered output of the detector is
unity, i.e.

oo

d
Emsh(w)mm;tx)l%l = ¥ = &), RNV (5.2)

With this choice of normalization, we can write the family of filters (5.1) in the form

it(w; 1Aq)

g(w; the) = S

(5.3)

where {I(w; (Ao} denotes a family of signals of unit SNR (3.8) or, using the terminology of
[43,44], of unit strength, i.e.

fe(w; A)

HO ) = o KGN

= (u(Ad), u(A) = 1. (5.4)

Let us first note that, in practice, it is impossible to use the family of filters (5.1) or
(5.3) in which the test parameters A, take on all possible values. Thus, one must consider
only a finite (discrete) lattice of filters. Since it is unlikely that any member of the family
will have its parameters exactly matching those of a signal present in the data train, we
will not reach, in general, the optimal sKR (3.8). We denote by « the maximal relative
drop (¢ > 1) in the optimal SNR that is due to the discrete nature of the lattice of filters.
Thus, if p is the optimal SNR, we assume that = o is the smallest SNR obtained by filtering
an arbitrary signai through the discrete lattice of filters. In an on-line analysis of data, a
compromise is clearly in order. On one hand, we want to minimize « in order to reach as
high a SNR as possible, and on the other hand we want to minimize the number of filters in
the lattice {(and thus to increase x) in order to save on computing time. Here, the problem
is simpler because our analysis will not be on-line, but rather will be a further analysis later
{see the appendix). Thus, we shall not optimize the value of &, but simply calculate the
spacing between filters, in all directions of the parameter space, for some good value of «,
say k~! = 0.99.

In order to decide upon the spacing between filters, we consider the behaviour of the
correlation function

Clhas tha) = (u(da), #(eha)) - (5.5)

This correlation function is equal to (the value at + = 0 of) the correlation between
the filter (5.3), parametrized by test parameters (i,, and a signal of unit strength (i),
parametrized by signal parameters A,. In the notation of (3.8) and (3.12), we have
CAes tha) = 0 (0, tha)/p(Ay), where the dependence on the signal parameters A, is
explicitly indicated. By the matched filtering theorem, the correlation (5.5) attains its
maximum one when all the test parameters exactly match those of the signal, b, = A,.
Looking for the spacing between filters in the particular direction £ = A, (where
0 £ o € N) of the parameter space, we maximize (5.5) over all the test parameters
except (& = Ay, That is, we consider the maximum correlation

Coax & £) = max CQhy, tha) (5.6)

oty
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as a function of the mismatch between & and (& [43,44] (@ priori, Cuax still depends on the
other signal parameters Ay, ¢ # cg, but we do not mention this for simplicity). Note that,
due to the existence of covariance amongst the various parameters, the maximum correlation
(5.6) does not reach its maximum when the test parameters A,, ¢ ¥ o, are equal to the
signal parameiers Ay, o 7 oq. Indeed, the mismatch between & and £ induces in (5.6) a
mismatch on the other parameters as well.

Let [£., &¢] be an interval over which the test parameters £ are chosen. This interval
represents for instance an astrophysically imteresting range of values of &, or an interval
surrounding some preliminary measured value & ® obtained in an on-line analysis of data.
We denote by £, the kth value of the test parameter £ in the lattice of filters, some values
of the other parameters A,, & 7 ¢, being given. We begin at the lower end of the interval
by choosing a filter with & = &r. Then, following {43,44], we construct the (k< 1)th filter
&yt from the kth filter & (with &, > &) by defining the spacing between &, and &..; to
be

A& prt = — & = ALE + AEa 5.7

where A& and A_&.,y are the increment from & and decrement from &..; at which the
optimal SNR p drops to the value k1 p, respectively. That is, A& and A_&,; are such that

Crnae (& + AsEr, &) = Cromn(Eet1 — Ak, fes1) =67 (5.8)

The construction terminates at the nth filter such that &, < &y < &, + A&,. The lattice of
filters so constructed is such that the kth filter yields a SNR larger than x~!p for all signals
having & € [& — A_&, & + A&

We now consider specifically the waveform (2.15) with (4.14). This waveform depends
on four parameters (besides the amplitude parameter A): three ‘Newtonian’ parameters
A; = {n, @, 1.}, and the total mass M which is in front of the tail contribution. For the
purpose of the simulation, it is convenient to use, instead of the parameter 5, the time 1
left until coalescence starting from the ‘arrival’ time # at which the frequency reaches the
seismic cut-off w;. We have 7 = (5n/3) w;s 82 1t is also convenient to use, instead of A
and ¢, the arrival time #; = #; — 7 and the initial phase ¢, of the signal at t;. We discuss
each of these parameters separately.

The coalescing time T. Figure 1 shows the behaviour of the correlation function Crp (T, 1)
defined in (5.6), as a function of the mismatch ;¢ — . The function is a monotonically
decreasing function of |7 — 7| taking its maximum | when v = 7, and which is symmetric
about the vertical axis because, in a signal of unit strength, the parameter v arises only
linearly in the phase of the signal [43,44]. Chnax(T, (7) is plotted for both the white noise
and the coloured noise defined in (4.24) and (4.25). The curves fall off much more steeply
when the detector noise is white than when it is coloured. This is to be expected because
the detector is relatively narrowband in the coloured noise case as compared to the white
noise case. Since the curves depend solely, for a given type of noise, on the difference
T — T, apart from a slight dependence on the total mass M, we can choose the distance (5.7)
between filters to be a constant At. From figure 1, we see that At = | ms is sufficient to
ensure in any case a value of ¥~ better than 0.99.

The total mass M. The function Cuom{M, M), shown in figure 2, exhibits the same
behaviour as in figure 1 for similar reasons. With «~! = 0.99, we see that the distance
between filters should be approximatively AM = 80Mj in the white noise case and much
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Figure 1. The comelation function
Crmax(t, ;) plotted against ,x — 1.

Figure 2. The correlation function
Crax (M, M) plotted against M - M.

larger in the coloured noise case. Thus, very few filters are needed in the M -direction of the
parameter space to ensure a good value of «~!. This, of course, reflects the fact that 8{w)
is a sub-dominant effect of very small post-Newtonian order. Thus, the number of filters in
the M-direction will be determined only by the precision at which one wants to measure M.

The time of arrival ¢;. The unknown time of arrival of the signal is characterized by the lag
J of the filter relative to the output of the detector in the discrete correlation (5.9) below.
The number of filters for the time of arrival is determined by the sampling rate A™' at
which output ang filters are sampled. A~ has to be larger than twice the bandwidth. The
precision in the arrival time of the signal is limited to A,
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The initial phase ¢,. We need only two filters in the g@s-direction of the parameter space,
for instance, one corresponding to ;¢; = 0 and one corresponding to ., = /2 (see, for
example, [48, 43]).

5.2, Numerical simulation

The waveform A{#) of an inspiralling binary, composed of the wavefront (4.14) and of the
tail contribution @(w), is added to simulated Gaussian noise n{t). The parameters of the
waveform are A, M, T, g, &;. The noise is chosen to be either white or coloured (see (4.24)
and (4.25)). The data o(¢) = h{t) +n(t) is our simuiated noisy detector output. It is filtered
through a family of templates g (¢) constructed using the algorithm developed above.

For numerical implementation of the filtering process we need to consider the discrete
version of the correlation (3.5) between the detector output o(t) and a filter 4{¢) satisfying
the normalization condition (5.2). Let o; and gz, with k=0, ..., K — 1, be the K samples
of the detector output and filter, respectively, sampled at the rate A: o, = o(t), gr = (&)
and £ = kA. The discrete correlation o; = o (;) of the samples o; and gy is then given by

K-1
- = Zok Gipj = Bgre2m ik (5.9)
0

where j is the lag, where 5, = Z:f:_ol o exp(i2wik/K) and §; = f;ol grexpli2mlk/K)
are the discrete Fourier coefficients of the detector output and filter, and where the second
equality follows from the discrete correlation theorem. Due to the availability of fast Fourier
transforms it is numerically less expensive to compute the correlation in the Fourier domain
{second equality in (5.9)). Note that the use of the discrete correlation (5.9) impliciely
assumes that the filter g is periodic with period K, ie. gux = g This periodicity
introduces spurious contributions in the correlation, and we solve this problem by ‘padding’
the filter with zeros so that the correct correlation is nevertheless obtained for some subset
of values of the lag (see [48]).

The family of templates we use in the simulation has the following characteristics. The
bandwidth is 100-2000 Hz and the sampling rate is A~! = 4000 Hz, The range of values
of i is [t — 0.01 s, T + 0.01 s], and the distance between filters is A7 = 1 ms. We use
a rather small range of values of (v because it is assumed that an approximate value of
is already known from a preliminary data analysis, However, this range is large enough to
take care of the covariance between 1 and the other parameters (notably M). The range of
values of ;M 1s chosen to be very large (~ 100Mg) and some negative values of (M are
tried. The distance between filters AM is adjusted so that it is smaller than the precision
in the measurement of M. Thus, in the computation below, the precision o)y is meaningful
only as long as AM < oy. If a computation yields a value of oy smaller than AM, we
have to redo the computation with a finer lattice of filters.

By maximizing the correlation (5.9) over the family of templates, for a given realization
of noise, we obtain a first set of measured parameters. The same signal is then added to
a different realization of noise and the resultant data is again filtered through the same
family of templates, giving us another set of measured parameters. The whole procedure is
repeated for a large number of realizations of noise (~50). The averages of the distribution
of the measured parameters, together with the standard deviations around the averages, are
then computed. This yields notably the standard deviation oy of the measured total mass.
(By a slight abuse of the notation, we denote by the same symbol oy, as in sections 3 and 4
what corresponds here only to a firite number of realizations of noise.) The resulis of the
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computation of oy are shown in figure 3, where this quantity is plotted against the optimal
SNR (3.8) of the signal, for various values of the total mass M of the signal, and for both
the white and coloured noises.

Based on figure 3 we can conclude the following. (i) The standard deviation oy is
a decreasing function of the SNR which depends on the type of noise and is only slightly
sensitive on the total mass M of the signal. This behaviour is in rather good agreement with
the theoretical result (4.26) (which we recall was computed in the idealized cases of high
SNR and of an infinite number of noise realizations). (ii) The value of oy is significantly
higher in the coloured noise case than in the white noise case. This is to be expected for the
same reason as noticed earlier: the detector is relatively narrowband in the former case as
compared to the latter case, and thus the precision on the measurement of M is lower. (iii)
We see that in order to detect the phase 8{w) at the one-sigma level (i.e. to have oy < M)
in the case of a binary with total mass M = 2.8Mg, we need a SNR larger than 200 with
coloured noise, and equal to about 100 with white noise. If the total mass is M = 20M,
the minimal SNR is about 50 with coloured noise and about 15 with white noise. These
numerical values are in agreement with the analytical computations (see (4.29) and (4.30)
for three independent parameters in the wavefront).
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Appendix. A non-optimal filtering

The aim of this appendix is to investigate the consequences of using a family of filters
matched on Ho(w) instead of the real wave h(w) including 6(w). That is, we assume that
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the experimenters correlate the output of the detector (3.1) not with the optimal family of
filters (3.11), but with the non-optimal family of filters

, Rolw; i)

Al
Sh(@) @

dole; thi) = ¥

where K, is defined in (4.2), and where ,A; is a family of test parameters of the wavefront,
the Latin index ranging from { = 1 to N. By substituting (A.1) into (3.5) and choosing
t = 0, we obtain, instead of (3.12),

{o, Ko(tA: )
(Ko(ehs), Koler)) 2~ (A2)

ao(thi) =

The experimenters then choose as their best estimate of the parameters of the source the
measured values mk(o) that maximize the ratio (A.2), i.e. such that

20 @@ =0 i=1,2...,N. (A3)
0 A
We denote the difference between the source parameters and the non-optimally measured
ones by

A0 =0, — A0, (A4)

The expression of 8150) can be immediately deduced, in the high SNR approximation, from
(3.15) by simple replacement of i by Hy and of n by #n -+ 8k, where 8k = h — Hy denotes
the tail term. We obtain

aH, {n + &h, Hp) 3Hy
2O _ o] SH0y TR T (g, S0 A5
] i Cx; n+ahv 3:&.} + (HO, H()) 0 Bkj ( )

where Cf(?) is the covariance mairix of the wavefront, inverse of the matrix (4.7). The
matrix C,.(f) is given by (4.18) and (4.19) in the case of inspiralling binaries. As we see from

{A.5), the variables § hﬁm are Gaussian (for Gaussian noise). But, contrarily to the variables
8Ay = {6M, 8]} associated with the optimal filtering of section 3, their expectation values
are not zero but given by

@ _ o [ {o, 98Ho\ (Sh, Ho) (H ?EE) At
8A-E '—'cq [ (6h, alj)-l-m(Ho:-Ho) LT al] . ( K )

As for their second-order moments, they are

(627 —ax M)A -0 ?) = . (A7)

Equation (A.6) means that by using the non-optimal filtering (A.1) we make errors (on
average) on the determination of the parameters (A.4). These errors are of course of the
same order O(G) = O(g3) as the tail; they have explicitly in factor the total mass M of the
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source. Using 8k = M3k/9M and the expression (3.16) of the matrix Dz, together with
{(4.10), we can express (A.6) in the simple form

Co

519 = —uDy;c? = M
i 0j%ij Coo

(A.8)
{where higher-order terms are neglected). The errors (A.8) can be readily computed in the

case of an inspiralling binary, where we have A; = {1, @, #;}. Inserting (4.18) and (4.20b)
into (A.8) yields

2GM

20 _
8" = -

F;G; . (A9)

Finally, let us check that the maximal value pg of the SNR obtained by means of the
non-optimal filtering based on Hy is equal, modulo negligible higher-order O(G?) terms
{using the same notation as in (4.3} and (4.4)), to the optimal value p of the SNR obtained
by means of the optimal filtering of section 3. Indeed, from (A.2) and (A.3), the non-optimal
SNR is

{h, Ho)

. oy _ 77~ 2y 2
m—%gM)_%aa+m6)—ﬁaiﬁﬁ+ow). (A.10)
Inserting Hy = £ — 8h with 8k = O(G), we then obtain
po = {h, B)'2 + O(G?) = p + O(GH {A.11)

where p denotes the optimal SNR (3.8). Thus, it is not possible to detect the phase 8(w)
by simply comparing the values of the SNRs obtained by means of the optimal filtering of
section 3 and of the non-optimal filtering of this appendix. A contrario, this means that it
is not necessary to include this effect in the filters of a preliminary on-line analysis of data
aiming at searching for the signal.

References

[1] Thorne K § 1987 300 Years of Gravitation ed S W Hawking and W Lsrael (Cambridge: Cambridge University
Pregs)
[2] Schutz B F 1989 Class. Quantum Grav. 6 1761
[3] Clark J P A, van den Heuvel E P J and Sutantyo W 1979 Astron. Astrophys. 72 120
[4] Phinney E § 1991 Astrophys. J. 380 L17
[5] Marayan R, Piran T and Shemi A 1991 Astrophys. J, 379 L17
[6] Bradaschia C et al 1991 Proc. Banff Summer Inst. on Gravitation (Banff, 1990} ed R Mann and P Wesscn
(Singapore: World Scientific)
[71 Abramovici A ef al 1992 Science 256 325
[8] Krolak A, Lobo I A and Meers B J 1991 Phys. Rev. D 43 2470
{9] Finn L. § and Chemoff D F 1993 Phys. Rev. D 47 2198
[10] Cuder C, Apostolatos T A, Bildsten L, Finn L. S, Flanagan E B, Kennefick D, Markovic D M, Ori A,
Poisson B, Sussman G J and Thome K S 1993 Phys. Rev. Lert. 70 2984
f11] Blanchet L and Schifer G 1993 Class. Quantum Grav. 10 2699
[12] Bonnor W B and Rotenberg M A 1966 Proc. R. Soc, A 289 247
[13] Couch W E, Torrence R I, Fanis A [ and Newman B T 1968 /. Math Phys. 9 484
[14) Hunter A J and Rotenberg M A 1969 J. Phys. A: Math. Gen. 2 34
[t5] Bonnor W B 1974 Ondes et Radiations Gravitationnelles (Paris: CNRS) p 73
[16] Thormne K 8 and Kovdcs S J 1975 Astrophys. J. 200 245



[t7]
[18]

[19]
[20]
[21]
(22}
i23]
[24]
[25]
[26]
[27]
{28]
29
{30
[31}
{32]
[33]
£34]
[35]
[36]
[37]
[38]
39
(401
f41]
[42]
{43]
[44]
[43]
[46]
[47]
(48]

[49]
{50]
(51
[52]
(53]

Signal analysis of gravitational wave tails 2831

Thotne K S 1980 Rev. Mod. Phys. 52 299

Blanchet L Contribution 2 I'étude dn rayonnement gravitationnel émis par un systdme isolé Thése
d’habilitation Université P et M Curie p 195 {unpublished)

Schifer G 1990 Astron. Nackr, 311 213

Peters P C 1966 Phys. Rev. 146 938

Kandt W and Newman E T 1968 J. Marh. Phys. 9 2193

McLenaghan R G 1969 Proc. Camb. Phil. Soc. 65 139

Price R H 1972 Phys. Rev, D § 2419

Price R H 1972 Phys. Rev. D 5 2439

Bardeen J M and Press W H 1973 J, Math, Phys. 14 7

Schmidt B G and Stewart J M 1979 Proc. R. Soc. A 367 503

Porrill J and Stewart J M 1981 Proc. R. Soc. A 376 451

Leaver E W 1986 Phys. Rev. 34 384

Fourgs-Bruhat Y 1952 Acta Math. 88 141

Bertotti B and Plebanskd J 1960 Ann. Phys, NY 11 169

Bruhat Y 1964 Ann, Mat. Pure Appl. 64 191

Friedlander F G 1975 The Wave Equation on a Curved Spacetime {Cambridge: Cambridge University Press)

Waylen P C 1978 Proc. R. Soc. A 362 233

Choquet-Brehat Y, Christodouloe I and Francaviglia M 1979 Anrn. Inst. Herri Poincaré A 31 399

Carminati J and McLenaghan R G 1986 Ann. Inst. Henri Poincaré (Physique Théorigue) A 44 115

Bilanchet L and Damour T 1992 Phys. Rev, D 46 4304

Blanchet L and Damour T 1988 Phys. Rev. D 37 1410

Blanchet L 1993 Phys, Rev. D 47 4392

Poisson E 1993 Phys. Rev. D 47 1497

Wiseman A G 1993 Phys. Rev. D 48 4757

Krolak A 1989 Gravitational Wave Data Analysis ed B F Schutz (Dortrecht: Kluwer)

Blanchet L and Sathyaprakash B S 1994 Phys, Rev, Lett. submitted

Sathyaprakash B S and Dhurandhar S 'V 1991 Phys. Rev. D 44 3819

Dhurandhar § V and Sathyaprakash B § 1993 Phys. Rev. D 49 1707

Wainstein L A and Zubakev L D 1962 Extraction of Signals from Noise (Englewood, NJ: Prentice-Hall)

Blanchet L and Damour T 1989 Ann, fnst. H. Poincaré {Physique Théorigue) 50 377

Damour T and Iyer B R 1991 Ann. Inst. H, Poincaré {Physique Théorigue) 54 115

Schutz B F 1989 The Detection of Gravitational Radiation ed D Blair (Cambridge: Cambridge University
Press)

Davis M H A 1989 Gravitational Wave Data Aralysis ed B F Schotz (Dortrecht: Kluwer)

Finn L § 1993 Phys. Rev. D 46 5236

Kidder L E, Will C M and Wiseman A G 1993 Phys. Rev. D 47 R4183

Cutler C and Flanagan E 1994 Phys. Rev. D 49 2638

Flanagan E 1994 Private communication






