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Gravitational wave tails and binary star systems 
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Received 7 May 1993 

Austract Gnvitational wave tails are produced by back-scattering of the outgoing gravitational 
radiation (emitted by an isolated system) o f the  curved spacetime associated with the total mass of 
the system. This paper investigates the spectral (or Fourier) demmposition of gravitational wave 
tails at large distances from the system at the 1.5 post-Newtonian order in the wave field. It is 
shown that the effects of wave tails are (i) to increase the amplihlde of the Fourier components of 
the (linear) waves by a factor linearly depending on the frequency, and (U) to add to the phase ofthe 
wawasupplementary phasedependingon the frequencyasolno. The lauerfrequencydependent 
phase introduces a new effect which should be observable in any radiation containing more than 
one frequency. for instance in the radiation emitted by a binary star system orbiting a Keplerian 
ellipse With non-zem eccenkicity, or in the mdiation emilted by an inspirailing (campcl) binary 
sbx system We propose in this paper to include the tail-induced effects (i) and (ii) in the matched 
filters of the future data analysis of inspiralling compact binary signals in laser interferometer 
gravity-wave detectors (at least in future, wry sensitive, such detectors). h this way, the filters 
will be highly conelated with 'b actual signal, and in pydcular will remain, as the frequency 
of the signal increases, in nccumfe phase with it. The contribution of the wave tail in the total 
gravitational energy emitted by a binary system is also calcuiated, and a numerical application to 
thebmay pulsar PSR 1913+16is presented. we findthatthetail-inducedrel~vecorrection in the 
orbital Pn of the pulsar is equal to r1.65 x 

PACS numbers: 0430,0480 

(too small to be observed). 

1. Intmduetion 

With the advent, by theend of the century, of a new generation of detectors (laser interferometer 
detectorslikev~GO[ 11 and~rciO[Z]), weshallprobablydetectforthefirsttimethegravitational 
radiation generated by rapidly evolving systems such as coalescing binary systems of neutron 
stars or black holes. The scientific benefits of this discovery are likely to be extremely important 
(see [3] for a review). On the other hand, the regular acquisition of timing data from pulsars 
in relativistic binary systems [4-91 leads to very precise observations of dynamical effects, 
in reaction to the emissicn of gravitational radiation, which are, for the moment, in excellent 
agreement with the predictions of general relativity [10-14] (see [U] for a review). 

These two total!y different means of observations-direct observation of gravitational 
radiation and direct observation of its back-reaction on the source-will in fact collect closely 
related astrophysical information. Indeed, the radiation field at large distances from the source 
(where the detector is located) in principle contains all the information concerning the back- 
reaction on the source. For instance, the rate of decrease of the orbital period of the binary 
pulsar can be (heuristically) deduced by equating the energy flux carried out at infinity by the 
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radiation field with the work done in the source by the reaction forces. Similarly, we expect 
that the net change of linear momentum of the source in reaction to the emission of radiation 
(recoil) will follow from the conservation of total linear momentum of the matter and of the 
gravitational field [16-18]. 

In this paper, we shall be interested in a particular effect that is present both in the radiation 
field at large distances from the source, and in the radiation reaction forces within the source. 
This effect, known as the tail effect, is physically due to the back-scattering of the outgoing 
radiation off the (approximate) Schwarzschild spacetime of the source. The tail effect is 
essentially a non-linear effect because the wave tails are produced by non-linear interaction 
of the time-varying multipole moments associated with the radiation field, and of the static 
mass monopole moment of the source. (Note that the tail effect also arises for electromagnetic 
radiation propagating on the Schwarzschild background.) A well known consequence of the 
existence of wave tails is the non-locality (in time) of the gravitational field, namely the fact 
that the field, at some time t and distance r from the source, depends, in a ‘hereditary’ way, on 
the state of the source at all instants in the past that are anterior or equal to the simply retarded 
time t - r /c .  Thus, on average, the gravitational field seems to propagate both on and within 
the local light cone, i.e. seems to propagate with all velocities smaller than or equal to the 
velocity of light. 

Let us quote some 
mathematical investigations of the existence and construction of solutions [75-801; the general 
investigations, by means of retarded post-Minkowskian approximation schemes, of the non- 
linear smcture of the gravitational radiation field [ 19-26]; the investigations of the propagation 
of integer spin fields on the Schwarzschild background [27-34,811; more specific studies of 
the formation of gravitational wave tails and backscattering effects [35-391; and more specific 
studies of electromagnetic wave tails [40-43]. Recently, the contribution of the tail effect 
in the far-zone wave field (at large distances from the source), has been derived within a 
post-Newtonian wavegeneration formalism valid for slowly moving, but possibly strongly 
self-gravitating, systems of bodies [4446]. 

In the far-zone wave field (neglecting terms that die out at large distances from the source 
like the inverse square of the distance), the non-local tail contribution appears at a relatively 
low post-Newtonian order of magnitude given by E ~ ,  where E is the ratio of a typical internal 
velocity in the source and of the velocity of light. Using the post-Newtonian terminology, this 
corresponds to the threehalves post-Newtonian (1.5 PN) order beyond the ‘Newtonian’ order, 
by which we refer the ‘0 PN’ order where the wave form can be computed using the Newtonian 
dynamics of the system. The wave tail at the 1.5 PN order arises from the interaction of the 
varying mass quadNpOk moment of the source with its static mass monopole moment, or 
ADM mass. (Note that the latter non-local tail contribution must be distinguished from another 
non-local contribution that formally arises at the order E’ or 2.5 PN in the wave form, and that 
is due to the re-radiation of the stress-energy tensor of the field itself [47-SO].) It has been 
shown [51,52] that, associated with the tail term in the far zone field, there is also a tail term 
in the equations of motion of the source, which modifies the usual Burke and Thorne [53- 
551 radiation reaction potential by a non-local correction of relative order or 1.5 PN-this 
corresponds to the fourth post-Newtonian order in the inner metric of the system. (Note that the 
same effect also exists for electromagnetic radiation reaction in an exterior gravitational field 
[56-57].) Furthermore, the tail term in the radiation reaction potential is perfectly consistent, 
as concerns energy conservation, with the tail term in the far-zone wave field [38,46]. 

The aim of the present paper is first to investigate in general terms the spectral (or Fourier) 
decomposition of the wave tail in the far zone, and then to apply the result of this investigation 
to the emission of waves by binary star systems. We have in view both the future detection 

The tail effect has been extensively studied in the literature. 
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by VIRGO and LIFO [1,2] of inspiralling compact binary systems, and the current timing of 
relativistic binary pulsars 14-91. (However, the former application seems to be much more 
important.) 

The gravitational wave tail depends on the dynamics of the source at all instants in the past 
(beforethesimplyretarded timet-r/c), but,asshownin[51], itisinfactonlyslightly sensitive 
to the detailed dynamics of the source at very early times, as soon as a weak assumption of 
‘moderation’ of the wave emission in the past is satisfied. Subject to this assumption, we 
determine in this paper that the effect of the non-local wave tail, at the 1.5 PN level, is (i) to 
modify each Fourier component of the (local-in-time) wave by a multiplicative factor in the 
amplitude, which is linear in the frequency and, perhaps more importantly, (ii) to add to the 
phase of the wave a supplementaryfrequency-dependent phase, depending on the frequency 
aswlnw.  

The latter frequency-dependent phase introduces a new differential effect because different 
Fourier components of the wave, corresponding to different frequencies, will undergo different 
phase shifts (which are not simply proportional to the differences of frequencies). This can 
be more clearly viewed if we think in terms of wave packets. Different wave packets, centred 
around different frequencies (but belonging to the ‘same’ wave), will propagate with the same 
groupvelocity, but will havethepositionoftheirmaximaofamplitude(in space)slightly spread 
out along the line of sight, with relative positions fixed by the differences of the logarithms of 
their central frequencies. This effect is in principle observable in all radiation which contains 
more than one frequency in Fourier space. For instance, this is the case for the radiation 
emitted by a binary star system orbiting a Keplerian ellipse with non-zero eccentricity ( l i e  
PSR 1913t16). This is also the case for the radiation emitted by a binary star system on 
a circular orbit whose radius and orbital frequency are changing with time, e.g. because of 
radiation reaction effects. Such inspiralling binary star systems, whose dynamics is driven 
by radiation reaction, constitute in their late stages of evolution the most promising known 
source of gravitational radiation. Their detection by VIRGO and L ~ G O  will rely on data analysis 
techniques such as matched filtering (see e.g. [3.58,59]). 

In this paper, we propose that the frequency-dependent corrections, brought about by the tail 
effect, in the waves emitted by an inspiralling binary system, be included in the matched filters 
of the future data analysis of inspiralling signals, at least for future very sensitive generations 
of detectors. Indeed, in order to have a good detection, it is important to correlate the output 
of the detector with a filter which is as precise as possible, and in particular which remains 
in accurate phase with the signal (see e.g. 1641 for a discussion). A filter that is matched 
merely on a Newtonian (or even first post-Newtonian) theoretical expectation of the signal, 
will acquire with respect to the actual signal a phase difference growing, as the frequency of the 
signal increases, like w In w .  To what extent exactly the use of an accurate filter incorporating 
the tail effect, i.e. a filter matched on (4.12)<4.13) below, can improve the data analysis of 
laser interferometer detectors will be examined in future work. 

Finally, the contribution of the tail effect in the total gravitational luminosity emitted by 
a binary pulsar orbiting a Keplerian ellipse (with arbitrary eccentricity) is computed. The 
same contribution also appears (by the argument based on energy conservation) in the rate of 
decrease of the orbital period of the pulsar as due to the emission of gravitational radiation. 
We find that the result is enhanced by a dimensionless function of the eccentricity which is 
somewhat analogous to the enhancement function of Peters and Mathews [lo]. In the case of 
the binary pulsar PSR 1913t16, the numerical value of the tail-induced relative contribution 
in Pn is equal to +1.65 x lo-’. This is too small to be measured, and is also negligible 
as compared to many other effects and uncertainties (see Damour and Taylor 171). However, 
the computation may become significant for other, not yet discovered, binary pulsars. It also 
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completes a work on the first-order corrections in Pm [bo], and it permits the recovery, in the 
circular orbit case, of a result obtained by previous authors working with a different method 
[61-64]. 

The plan of this paper is as follows. In the first section, we review the 1.5 post-Newtonian 
wave-generation formalism of [44-46]. In the second section, we Fourier analyse the wave 
field and we obtain the tail-induced corrections in the wave amplitude and in the wave phase. 
An alternate derivation is presented in an appendix. In the third section, we apply these results 
to the computation of the field generated by an inspiralling binary star system (we neglect in 
the applications all post-Newtonian corrections which do not belong to the tail). The validity 
of the computation in the case of an inspiralling (decaying) orbit is proved in an appendix. 
Finally, in the fourth section, we calculate the influence of the wave tail in the gravitational 
energy emitted by a binary system, and we make a numerical application to the binary pulsar 
PSR 1913t16. 

2. Three-halves post-Newtonian gravitational wave generation 

We consider in this paper an isolated system, which is the source of gravitational radiation, and 
which is at once slowly moving and weakly stressed. This means that we have a post-Newtonian 
dimensionless parameter, say 

which isrequiredto besmallcompared with 1. In(2.1) wedenote by T’”(q t )  thecomponents 
of the sbess-energy tensor of the gravitating source in some coordinate system I, t covering 
the source. The small parameter & is equal to the ratio between a typical internal velocity in the 
source and the velocity of light, or equivalently to the ratio between the radius a of the source 
and a typical reduced wavelength hj2n of the emitted radiation. In terms of the (angular) 
frequency w = Zrrc/h of the radiation, this reads as 

- X & < < l .  aw 
C 

Note that for a bounded self-gravitating system we have typically 02a3 Ft: G M, where M is 
the total mass of the system, and thus (2.2) implies 

We shall not require that the system be everywhere weakly self-gravitating. For instance we 
could have a system made of several strongly self-gravitating bodies like neutron stars orbiting 
each other with typical orbital frequencies satisfying (2.3). 

The far-zone gravitational field generated by the system, at large distances from the system, 
has been computed in a recent sequence of papers [44-46] with a relative precision equal to 
c3 (equation (2.3)). This precision corresponds to what can be called the three-halves post- 
Newtonian approximation level (in short the 15 PN level) beyond the dominant ‘Newtonian’ 
level at which the Newtonian dynamics of the source is sufficient to compute the wave form. 
We refer to 1441 for discussion of the link, at the 1 PN order, of the present formalism and 
of the earlier formalism of Epstein and Wagoner [65], and of Thome [U]. Let us denote by 
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X p  = (cT,  X )  afar-zone coordinate system covering the regions at large distances from the 
source, and such that the metric admits in these coordinates an expansion in simple inverse 
powers of the distance R = 1x1 (without logarithms of R). We assume that this coordinate 
system is transverse and trace-free (IT) and denote by 

p a b i j ( N )  (8.i - NaNi)(Sbj - NbNj)  - i ( 8 n b  - NnNb)(sij - N i N j )  (2.4) 

the IT projection operator onto the plane orthogonal to the radial direction N = X / R  from 
the source (the indices a, b, i. j ,  . . .range from 1 to 3). The asymptotic wave field in the IT 
coordinates, hv = (gab -6ab)7T. valid at first order in the inverse of the distance and at 1.5 PN 
relative order (i.e. accurate to within E ~ ) ,  then reads as [46] a! 

In this expression, we denote by U = T - R / c  the retarded time of the far-zone coordinates, 
and by K ( " ) ( U )  the time-derivative d"K(U)/dU". The first term in (2.5) involves Newtonian 
and post-Newtonian terms of order 0 PN, 0.5 PN, 1 PN and 1.5 PN. The tensor Kij (U ,  N )  is 
given by the irreducible multipole decomposition 

where I i j ,  I j j k ,  I i j k i  and Iijjn,,, are the mass-type multipole moments of the source (quadrupole, 
octupole,. . .),and where Jij, Ji jk  and Jjjx; are thecorrespondingspin-typemultipolemoments. 
All these moments are symmetric and trace-free (STF) in their indices (we use the notation 

stress-energy distrlbution of matter in the source. Their precision must be consistent with the 
1.5 PN approximation, which means that the quadrupole and octupole mass moments lii and 
Iijk, and the quadrupole spin moment Jj j ,  must involve post-Newtonian correcting terms of 
order E' - 1/c2, while all higher moments can take their usual Newtonian form. We shall 
quote here only the post-Newtonian expression of the mass quadrupole moment I i j .  It reads 
[441 

T(.. tJ)  - - y(Tj 1 +qi),). They aregiven asexplicit integralsextending overthecompact-supported 

where T", To' and TQ = &Ti' denote the contravariant components of the stress-energy 
tensor of the source in the (harmonic) coordinate system x ,  t ,  and where i i j  and i i j k  denote 
the trace-free parts of x'xj and x i d x k .  We refer to [44] for the similar expression of the 
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mass octupole moment I i j k ,  and to [45] for the (more complicated) expression of the spin 
quadrupole moment J , .  (Note that the Newtonian precision of the quadrupole moment (2.7) 
is sufficient in the second term of (2.5).) 

All the source moments I i j (U) ,  & ( U ) ,  . . . in (2.6), and the tensor Kjj(U,  N )  itself, are 
local-in-time (or 'instantaneous') functionals of the source in the sense that they depend at 
time U on the components of the stressaergy tensor of the source at the same time U (see 
(2.7)). By contrast, we see that the second term in the asymptotic wave field (2.5). which 
involves the fourth derivative of the source quadrupole moment (2.7) and the total mass M 
of the source, depends on the state of the source at all times V < U in the past. This term, 
which we shall qualify as non-local-in-time (or 'hereditary'), represents a component of the 
radiation field which propagates on average inside the light cone. Physically, this term can be 
viewed as the wave tail produced by the continuous backscattering of the linear quadrupolar 
wave off the curved spacetime generated by the mass M of the source. It has been shown 
that to the non-local wave tail in (2.5) corresponds a non-local modification of the radiation 
reaction force in the source [5 1,521, and that the energy carried out at infinity by the wave tail 
is exactly balanced by the work done in the source by this non-local force [46]. 

The wave tail in (2.5) involves two constants, besides the mass M of the source: b and G ,  
The constant # was computed in [46]. Here we have chosen to include this constant in the 
tail even though it is in front of a term which is proportional to the thud derivative of l i j ( U ) ,  
and which is thus purely local. (Note that the same { appears also in the radiation reaction 
force acting within the source [52].) The constant b is an arbitray constant which is strictly 
positive and has the dimension of time. It parametrizes the coordinate transformation between 
the far-zone coordinate system T, X and the (harmonic) source coordinate system t ,  x [46]. 
More precisely, the constant b relates the origin of the far-zone coordinate time U = T - R f c  
(at some fixed large distance of the source) to the origin of the harmonic coordinate time I in 
the source. The relation between both times reads as 

L Blanchet and G Schajei 

where r = 1x1 is the distance of the source in harmonic coordinates. By inserting (2.8) into 
(2.5) we easily see that the far-zone field does not depend (within the accuracy with which it 
is derived) on the constant b when it is expressed in source-rooted coordinates t ,  x [46]. 

The integrand of the wave tail in (2.5) contains a logarithmic kernel which blows up when 
the span interval U - V between the 'current' time U and the actual time V of dependence of 
the field on the source goes to infinity. We must therefore supplement the study of the wave 
tail by some assumption concerning the behaviour of the source at very early times V + -W. 

In this paper we shall assume that the second time derivative of the quadrupole moment lii 
(equation (2.7)) becomes asymptotically constant when V + -w, i.e. 

(2.9) 

where Aij is some constant tensor. Furthermore we shall assume that the o symbol in (2.9) 
satisfies a"o(l)/aV' = o(l/Vn). (By f(V) = o(g(V)) we mean that f(V)/g(V) tends 
to zero when V --t -w.) The assumption (2.9) precludes the emission of a strong burst of 
gravitational radiation in the past (see e.g. [51]), and it is satisfied for instance in the case of 
an initial scattering situation where the system is formed by accretion of bodies moving on an 
initially hyperbolic orbit. (The tensor Aij is in this case equal to CAmauiui wheremn and I J ~  
are the mass and initial velocities of the bodies.) Subject to the assumption (2.9), the integrand 
of the wave tail behaves as In(-V)o(l/VZ) when V --f -CO, and the integral is perfectly 
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convergent. (The wave tail (2.5) was derived in I461 under the more restrictive assumption of 
stationarity in the pas-before some fixed date in the past. We shall admit here that (2.5) still 
holds under the weaker assumption (2.9).) 

Finally it will be useful in this paper to express the wave tail in an equivalent form, but 
containing a better behaving kernel when V + -w. To this end, we split the integral in 
(2.5) into two integrals, one corresponding to the 'recent past' of the source and extending 
from V = U to V = U - T, where 7 is some constant > 0, and one corresponding to the 
'remote past' of the source and extending from V = U - 7 to V = -w. Then we integrate 
by parts the remote past integral and use (2.9) to cancel out the all-integrated term at the limit 
V = -w. As a result we obtain 

in  which we use the variable x = (U - V ) / 7 .  (We no longer mention the neglected terms 
Ob4) and o( l /Rz) . )  

3. Spectral decomposition of the gravitational wave field 

We investigate in this section the continuous Fourier decomposition of the wave field in the 
form derived in (2.10). Note that since the wave field satisfies the post-Newtonian assumption 
E << 1, where E is the small parameter (2,1), its Fourier decomposition wiU be valid only for 
low enough frequencies w sati&ing (2.2) or (2.3). 

Thanks to the fall-off propem - I/x of the kernel in the 'remote past' contribution of the 
tail in (2.10), we see that each separate Fourier component of the wave field (2.10) will yield a 
convergent integral. (Note that this does not mean that the Fourier decomposition of the field 
in the original form (2.5) is divergent, but simQly that one cazo t  compute it by inverting the 
summations in V and in w.) Let us denote by Kij (0, N )  and &j(w) the Fourier transforms of 
the source moments Kij(U, N )  and I i j ( U )  given by (2.6) and (2.7). We have 

(3.la) 

(3.lb) 

Since the moments (2.6) and (2.7) are real, their Fourier transforms satisfy &(-m, N )  = 
z ; ( w ,  N )  and I i j ( -m)  = Ii;(m) where *denotes the complex conjugation. We insert (3.1) 
into the field (2.10). and we use the following identity, valid for any non-zero real number A: 

where sign@) and IAl denote the sign and absolute value of A, and where C = 0.577.. . is the 
Euler constant (see e.g. [66] pp 583 and 928). As a result, we obtain the following expression 
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of the Fourier decomposition of the wave field (2.10): 

~ Z ( U )  = -Pabij(N) -(-w2)e-i*u [ Kij(ws - N) 

L Blancher and G Schafer 

2G 
RC4 L- ;; 

2GM R 
+ - [ Z l w l + i w ( " ( 2 1 0 l b ) + ~ - C I ) ] ~ j ( w ) ) .  c3 12 (3.3) 

This expression does not depend on the constant T we introduced in (2.10) to separate the wave 
tail into 'recent past' and 'remote past' contributions. Note that the separation into recent past 
and remote past contributions is not the only way to derive (3.3). In appendix A we proceed 
in another way which is based on the introduction in the original form of the wave tail in 
( 2 5 )  of an 'adiabatic damping' factor er", where 01 is some positive constant. The Fourier 
decomposition (3.3) is then recovered in the limit 01 + 0. 

We shall now express the Fourier decomposition (3.3) in a more convenient form for our 
purpose. We note first that in the second term of (3.3), which has in front of it the small 
factor 2GMfc3, we can replace consistently with_the 1.5 PN approxeation $e quadrupole 
moment T, (w)  by the post-Newtonian moment Kij(w, N ) ,  because lij and K 2  differ from 
each other by small post-Newtonien corrections (see (2.6)). Then, the moment K,j  is in factor 
of a complex-valued expression which can be written as a real amplitude times a complex 
exponential. Neglecting higher-order post-Newtonian terms, we finally obtain 

(3.4) :wu+ie(d [ nGM 
Sfoc dw(-02)r?ij(o, N) 1 + ~ l o l ]  e-' 

2GMw [In(~lwlb) + c - - 12 . 
111 

h E ( U )  = -Pobij(N) 2G Rc4 -- 2n 

where we have posed 

(3.5) 

The final form (3.4), (3.5) of the Fourier decomposition of the far-zone gravitational field 
constitutes a central result of this paper. It shows that the effect of the backscattering of the 
linear waves off the monopolar spacetime associated with the mass of the source (tail effect) 
is: 

(i) to increase the amplitude of each Fourier component of the linear waves by a 
multiplicative factor 1 + nGMlwl/c3 which is linear in the absolute value of the frequency; 

(ii) to add to the phase of the linear waves the supplement~uyequency-dependenf phase 
O(w) given by (3.5). 

Note that the tail-induced modifications (i) and (ii) of the linear waves apply identically on 
all the components of the waves, and in particular on the two independent polarization states 
of the waves. Recall also that the modifications (i) and (ii) are valid only for frequencies w 
satisfying the post-Newtonian assumption (2.3); thus we expect that they will be of very smll 
numerical order of magnitude. However, the frequency-dependent modification of the phase 
could be important in the case of the radiation emitted during the late stages of inspiralling 
compact binary systems. 

If we assume for simplicity that the components of the tensor t i j ( w ,  N )  are either real or 
purely imaginary (see e.g. (5.5)), we can write the total phase of the gravitational wave (3.4). 
(3.5) in the fonn 

O(0) = - 
c3 

"1 (3.6a) 
2GMw 

rp(w, T. R )  = w (T - R / C )  - - [ ~ n ( ~ l w l b )  + c - - 
c3 L 12 



Gravitational wave tails and binary star systems 2707 

(modulo the possible addition of h / 2 ) ,  where T and R are the far-zone coordinate time and 
radial distance to the source. In these coordinates, the wave vector along tke radial direction 
is K = -arp/aR = w/c.  We can also write rhe tozal phase (3.6a) in terms of the source- 
rooted (harmonic) coordinates t and r = IzI. By inserting (2.8) into (3.6a) (and neglecting 
higher-order terms) we obtain 

2GMo [In (2lolr/c) + c - rp(w, t ,  r )  = o ( t  - r /c )  - - (3.6b) 
12 c3 

This phase does not depend on the constant b. The associated wave vector is k = -arpjar = 
(w/c)[l + 2GM/(rcZ)1. 

A case of interest is when the gravitational wave (3.4) is in the form of one or several wave 
packets, cenJtred around one or several frequencies or,. . . , i.e. when the components of 
the tensor K,j(o.  N) are all sharply picked around m, U,.. . . . The velocity of propagation 
of the wave packets (or group velocity) is the same for all wave packets; it is given by 
V, = aw/aK = cinthefar-zonecoordinates(T, R),andbyu, = a o / a k  = c[l-2GM/(rcZ)1 
in the source coordinates (t .  r ) .  (These velocities are the same as for high-frequency 
eleceomagnetic waves propagating on a Schwarzschild background.) The position of the 
maxima of amplitude in space of the wave packets along the radial distance (or line of sight) 
is determined by solving the equation (afp/ao)(oo, T .  R,,(T)) = 0 in far-zone coordinates, 
or the equation (afp/ao)(oo, t ,  r-0)) = 0 in source coordinates. From (3.6) we find 

and 

(3.7a) 

(3.7b) 

This shows that the maxima of amplitude of different wave packets corresponding to 
different central frequencies (but belonging to the same wave (3.4)) are at some given time 
distributed along the line of sight with slightly different relative positions fixed by the ratios 
of frequencies. Equivalently, the maxima of two wave packets corresponding to two different 
central frequencies WO and col arrive at some given distance with a slight relative delay given 
by 

The wave packet with the higher frequency is slightly delayed with respect to the wave packet 
with the lower frequency. 

4. Application to the radiation of an inspiralling binary star system 

As we recalled in the introduction, inspiralling (compact) binary star systems constitute 
probably, in their late stages of evolution, the most promising sources ofgravitational radiation. 
They seem also to provide the most interesting application of the tail-modified expression 



2708 

(3.4). (3.5) of the Fourier decomposition of the far-zone wave field. (Recall that the wave- 
generation formalism summarized in section 2 is valid for systems containing strongly self- 
gravitating compact bodies like neutron stars [46].) 

For simplicity we shall neglect in the applications (this section and the next section) all 
post-Newtonian corrections in the wave form (3.4), (3.5) except the one which is associated 
with the tail (including its associated coefficient E). Namely, we shall replace in (3.4) the 
post-Newtonian tensor K;,(U, N )  of (2.6) by the usual Newronian quadrupole moment of the 
system. This will permit us to separate more clearly the effects which are specifically due to the 
wave tail. On the other hand, post-Newtonian corrections other than the one associated with the 
wave tail are well known, especially for binary systems [67-7 11, and thus can straightforwardly 
be added if necessary. 'we denote the Newtonian quadrupole moment of the binary system 
(assimilated to a system of two point-masses) by 

~ j j  = m,rir{ + m&i = & r i d  

L Blanchet and G Schafer 

(4.1) 

(in a mass-centred frame), where r i  = ri - ri is the relative position of the two point-masses 
ml and mZ1 and where /I = m1m2 j M  is the reduced mass of the system (with M = ml + m2 
its total mass). For later convenience, we assume in (4.1) that Qij is not trace-free. so that the 
trace-free moment Kij of (2.6) is equal, in theNewtonian limit, to Qjj - f8ijQkk. 

In the case of a two-point-masses binary system moving on a Keplerian orbit, we have 
instead of the continuous Fourier decomposition (3.1) a decomposition into a discrete series 
of frequencies. Let us write in this case 

(4 .2~)  

where z20 is the orbital frequency of the bin% (SO = 2nLP0, where PO is the orbital period), - 
and where the Fourier discrete coefficients Qij_satisfy Qij = -" Q F j .  The coefficients Qi, 
are related to the continuous Fourier transform Qij (0) by 

Thus we replace in (3.4) the tensor E;j(w, N )  by the tensor G;j(w) (the trace of &j will be 
cancelled out by the TT operator Fobij) and we make use of (4%) to go from continuous to 
discrete frequencies. This yields the wave field 

(where we can use M = ml + m2). Let us also write the two independent polarizations 
h+(U) and h ,  ( U ) ,  associated with the wave field (4.3), with respect to two perpendicular unit 
directions P and Q in the plane orthogonal to N (so that N ,  P, Q forms an oriented triad). 
They are 

(4.4) 
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where we have posed 

- PjPj-  Q i Q j  - 
n Q i j  2 nQ+ 

- P i Q j + P j Q i  - 
n Q x  = 2 " Q i j  

(4.5a) 

(4.5b) 

We shall now restrict our attention to a binary star system orbiting a circular (Newtonian) 
orbit. This is a safe restriction during the late stages of the inspiralling of a binary system 
because the orbit of the system, having evolved through the action of radiation reaction, will 
have circularized earlier (see e.g. [3]). In the circular case we have only one frequency in 
the radiation, namely twice the orbital frequency w0 = 2Q0, and the corresponding n = 2 
components of the quadrupole moment are given by 

(4.60) 

(4.6b) 

where Q is the radius of the orbit (satisfying wiai = 4GM), and where 'po is some constant 
phase. Let us denote by i the angle between the line of sight from the source to the observer 
and the normal to the orbital plane (we assume 0 < i < n/2), and let us orient the polarization 
axes P and Q along the major and minor axes of the projection of the orbital plane on the sky, 
respectively. Then the two wave polarizations (4.4) are easily obtained in the form 

(where WO = 2610). The expressions (4.7) have also been derived by Poisson f611 (see his 
equations (6.1)46.3)), albeit in another form and in the limiting case fi << M. (The coefficient 

found by Poisson differs from our coefficient $ because he uses Schwarzschild coordinates 
instead of harmonic coordinates in (2.8).) Note that these expressions are a priori valid only 
in the case of a fixed, non-inspiralling (non-decaying) orbit. However, as we shall prove, the 
expressions valid in the case of a decaying orbit, and in an appropriate regime, can be simply 
obtained by replacing in (4.7) the constant frequency o0 by the varying frequency o(U) of the 
decaying orbit. 

The dynamics of the decaying circular orbit, driven by radiation reaction, is known from 
the work of Peters [72]. It is as follows. The radius of the orbit, as a function of the far-zone 
retarded time U (say), reads as 

a(Li) = o r [ r , ( ~ ) ] ' / ~  ( 4 . 8 ~ )  

where we denote by sc (U)  = tc - U the coalescing time left till coalescence starting from 
time (I (tc is the instant of coalescence), and where the constant a! depends on the masses and 
is given by 

(4.8b) 
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As the orbit decays, the frequency increases, and by Kepler’s law &a3 = 4GM we get 

L Blanchet and G Sch@”er 

w ( U )  = p[k(u)l-3’8 ( 4 . 9 ~ ~ )  

where the constant p is given by 

(4.9b) 

The phase associated with the time-varying frequency (4.9) reads as 

(4.10) 

where rp, denotes a constant final phase at the instant of coalescence. Finally we also introduce 
the dimensionless ratio between (half) the period of the binary and the coalescing time, i.e. 

8 
5B 

U 

( n ( U ) = l  w(f)dl+(n,=--[r~c(U)lYs+(Pc 

(4.11) 

The condition { < 1 defines the regime of the decay of the orbit in which the relative changes 
of the frequency and the radius of the binary in one period of the binary are small (and of 
order 6). The regime ( << 1 is the one during which most observations of inspiralling binaries 
will take place [3]. Note that the parameter { is of order 6 % E’ where E is the post-Newtonian 
parameter (2.1). 

At the level of thefirst post-Newtonian approximation in the wave form (i.e. including 
terms of relative order 1 ,  E and E’) ,  it is legitimate, so long as the parameter { given by ( 4 . 1 1 )  
remains small, to derive the wave form in the case of the decaying orbit by a simple replacement 
in (4.7) of the constant frequency 00 of the fixed orbit by the varying frequency (4.9) of the 
decaying orbit. Indeed, the wave form at the 1 PN level is a local-in-time functional of the 
source, i.e. it depends on the source’s parameters at the ‘current’ time U only, and thus in 
such a replacement 00 --t w ( U )  we shall make errors of order c ( U )  at most. However, 
the tail contribution we are interested in, which arises at the relative 1.5 PN order s 3 ,  is not 
a local-in-time functional of the source’s parameters. This means that the tail contribution 
involves for instance, besides the current value w ( U )  of the frequency, all arbitrarily early 
values o(V) of the frequency (with V < U), which differ from o(U) by relative terms 
tending to one in the limit V + -co, and thus not being of order $ ( U ) .  Therefore, it seems 
to be necessary to perform another computation of the wave tail in the case of a decaying 
orbit satisfying the laws (4.8t(4.10). A possible computation is to go back to the continuous 
Fourier decomposition (3.4), (3 .3 ,  substitute in it the Fourier transform of the decaying orbit 
obtained by means of the stationary-phase approximation method, and then obtain the inverse 
Fourier transform. However, we have chosen to perform, in appendix B, a direct computation 
in the time series which shows that, most satisfactorily, the replacement 00 -+ w ( U )  (and also 
~ o U  + (00 -+ p ( U ) )  is correct even for the wave tail, at first order in the current value ( ( U )  of 
theparameter(4,11)or,moreexactly,atfirstorderin~(U)In~(U). Thereason why thisworks 
is that the ‘remote past’ contribution of the wave tail is itself of small numerical order { ( U ) ,  
when we choose the constant T in (2.10) to be the current value of the coalescing time rc(U) 
(see appendix B), and thus that only remains the ‘recent past’ contribution of the wave tail, 
in which the frequency of the orbit takes essentially its current value o(U). (Note thzt since 
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c(U) is of order (E(U))~,  the errors made in the replacement 00 -+ w ( U )  in the 'Newtonian' 
wave form are formally smaller than the wave tail, which is of order 

In conclusion, we can now write down from (4.7) and appendix B the expressions of the 
wave polarizations generated in the far zone by an inspiralling (compact) binary system, 

only.) 

t O[W)lnW' ) I  (4.12b) 

where the frequency w ( U )  and the phase p(U) are given by (4.9) and (4.10), where the 
neglected terms are of order c(U)lnc(U), &U) being the parameter given by (4.11) (see 
appendix B), and where the tail-induced phase S(o(U)) is given by 

(4.13) 

The latter tail-induced phase, with its w ( U )  Inw(U) dependence on frequency, could be 
important in the search of inspiralling compact binary signals in the raw output of future laser 
interferometer detectors. Indeed, as the frequency of the signal increases with time, (4.13) will 
induce a phase difference, growing as wlnw, between the actual signal, which is composed 
of a front-wave and of a tail-wave, and a 'Newtonian' signal (or even a 'first-post-Newtonian' 
signal), which is composed only of a front-wave. The data analysis technique for extracting the 
signal out of the noise is to correlate the output of the detector with a filter that is matched on 
the expected signal itself (see e.g. [3,58,59]). Thus, we think that it is important to include the 
tail-induced phase (4.13), and in fact all the tail-induced corrections appearing in (4.12). in the 
construction of matched filters, so that signal and filters remain as long as possible correlated. 

5. Application to the timing of a relativistic binary pulsar 

The binary pulsar PSR 1913+16 has been timed since 1974 with increasing precision, and 
the observed change Pobs of its orbital period now agrees to within 0.555 with the theoretical 
prediction &b 191. In this section, we wish to compute the value of the relative correction 
in the Pn of the binary pulsar (or of another pulsar), which is due to the wave tail arising at 
the 1.5 PN approximation in the wave form. Our aim is also to show how the computation 
proceeds, to recover in a particular case a result of previous authors [61-64] working with 
different methods, and to complete a work 1601 on the relative correction in & which is due 
to the 1 PN (local) approximation in the wave form. 

We shall need the expression of the 'gravitational luminosity' L ( U , N )  = 
(dEgm/dUdQ)(U, N )  of the binary system, i.e. the gravitational energy emitted by the 
system in one unit of time U and in the solid angle dQ around the direction N .  The lliminosity 
L(U, N ) ,  including the tail effect, can be straightforwardly computed, using standard formu- 
lae, by differentiating and squaring the gravitational field (4.3). Then, as L(U, N )  is a periodic 
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function of time with the orbital period PO = 2r /Qo,  we can perform its time-average. As a 
result, we obtain (neglecting higher-order terms) 

L BIanchet and G Schbfer 

where ,(Lo(N)) denotes the nth Fourier component of the 'Newtonian' averaged luminosity, 

a(&(N)) = ~ ( n ~ O ) ' P , b i j ( N ) . G ~ b n e " : j .  (5.2) 

(Recall that we neglect all post-Newtonian approximations except the one which is associated 
with the wave tail.) By averaging (5.1) over all directions of emission N we get 

G 

where .(LO) is the nth Fourier component of the standard 'Newtonian' quadrupole formula 

As we see in (5.1) and (5.3). the effect of the wave tail is to modify each nth Fourier component 
of the luminosity by a multiplicative factor linear in the frequency of the nth harmonics. (This 
is valid so long as the post-Newtonian condition (2.3) remains satisfied.) 

The Newtonian averaged luminosity (LO) = 2 Cz, &o) has been computed for a system 
of two point-masses orbiting a Keplerian ellipse by Peters and Mathews [IO]. These authors 
obtained the expression of (LO) by two methods. The first method was to take directly the 
average in time of the usual quadrupole formula computed for the Keplerian ellipse, and the 
second method consisted of summing up the series of the n ( L ~ ) s  obtained by Fourier analysis 
of the Keplerian motion. Let us consider in more detail the second method. The Fourier 
coefficients of the quadrupole moment of a system of two point-masses orbiting a Keplerian 
ellipse are given (for n # 0) by 

( H a )  

(5.5b) 

( 5 . 5 )  

where a0 is iote by 
J,(x) the usual Bessel function, and by J i ( x )  its derivative dJn.(x)/dx. When e + 0, the 
Fourier coefficients (5.5) are all zero except the ones corresponding to n = 2, and we recover 
(4.6) above (with (00 = 0). By inserting (5.5) into (5.4), we obtain 

: semi-major axis of the (relative) orbit and e is the eccentricity. We 
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where g(n.  e )  is a quadratic product of Bessel functions J. and J i  which is given by 

4 1  x - - + - - 3 e  [ e3 e 

(See equation (AI) of [ IO] in which the fifth term should read (1 - e Z ) ( J ~ / n ) 2 ( 4 / e ) 2  instead of 
(1 - eZ)(J~/n)Z(4/e2)2.) Then, the result obtained by Peters and Mathews (which was found 
to be identical by the two methods) reads as 

where f (e) is the famous ‘enhancement’ dimensionless factor 

The proof that the series of the&, e)s can be summed up to yield (5.9) is given in the appendix 
of [lo]. 

We now use these results to express the relative correction in the averaged luminosity (C) 
(equation (5.3)) that is due to the tail effect, by means of the functions g(n. e), By inserting 
(5.8) and (5.9) into (5.3) we readily obtain 

where we have used Qga; = G M ,  and where &) is the dimensionless factor 

(5.10) 

(5.11) 

In the case of a circular orbit (e = O), the only non-zero g ( n ,  e )  is g ( 2 ,  e = 0) = 1 and thus 
we see that the function (5.1 1) satisfies 9(e  = 0) = 1. In this case the relative correction in 
(L) as due to the tail is equal to 4?r times the parameter ( G M / C ’ ~ ~ ) ~ / ~  (which is = E’ where E 
is the post-Newtonian parameter (2.1)). This coefficient 4n was derived first in a study of the 
circular motion of a small mass around a large one [61], and an alternative derivation, valid for 
arbitrary mass ratios, was subsequently given 1621 (see also [63,64]). In the general case of a 
non-zero eccentricity, the coefficient 4n has to be multiplied by the function rp(e) of (5.1 1). 
Note that we tried to sum up the infinite series (5.1 l),  as Peters and Mathews did to obtain their 
function f(e), but we did not succeed. Apparently, no closed-form expression for the function 
p(e) can be found in this way. We have therefore resorted to a numerical computation, the 
result of which is shown in figure 1. As we see, the function p(e) increases from 1 to +w when 
e goes from 0 to 1 (when e = 1 the series diverges). Thus, the function $?(e) plays the role of 
an ‘enhancement’ factor, when the eccentricity is large, for the tail-induced relative correction 
in the total luminosity (%IO), exactly as does the function f (e) of Peters and Mathews for the 



2714 L Blanchet and G Schiifer 

Figure 1. Function ‘p platted against the eccenUicitj e, 

Newtonian luminosity (leading term in (5. IO)). Note, however, that the function V(e) increases 
less rapidly than the function f (e) .  For instance we have ~ ( 0 . 9 )  - 30 while f (0.9) - 1000. 

The eccentricity of the orbit of the binary pulsar PSR 1913+16 is e = 0.617 and, in this 
case, we find q ( e )  = 4.16. Inserting this value into (5.10), together with the numerical values 
of the (relative) semi-major axis q = 1.95 x 109m and of the total mass M = 2.83 MO, we 
get the numerical contribution of the tail effect in the gravitational luminosity of the binary 
pulsar system: 

= +1.65 x 10-7. (5.12) 

We can then apply the usual (heuristic) energy balance argument for the computation of the 
orbital Pm of the pulsar. Since in the equations of motion the first half-integer (‘odd’) post- 
Newtonian approximation is a higher-order approximation (namely the 2.5 PN approximation), 
and since (as it is easy to check) (5.12) represents in fact the whole contribution of the 1.5 PN 
approximation in the luminosity, we see that (5.12) will give also the whole 1.5 PN relative 
contribution in the theoretical formula for PT~. Hence, extending our previous work [60], we 
can write 

( (L’Lp’ >PSR 1913+16 

where n is the orbital frequency of the pulsar ( n  = no), where 0 is some post-Newtonian 
eccentricity which is associated with the object which is timed [73,74], and where the relative 
1 PN and 1.5 PN corrections have the numerical values 

(5.14) 

(5.15) 

1 -xI PN = +2.15 1 0 - ~  
CZ 

1 
- ~ 1 , 5 p N = + 1 . 6 5 ~  
c3 
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Thevalueofc-*X1 p~€ol low~~omequat ion(4.27)of[60] ,andthevalueof~~~X~.~ p~follows 
f" (5.12) above. These values are far smaller than the present accuracy in the measurement 
of ?obs, which is presently 0.5% 191, and they are also negligible as compared with many 
other effects and uncertainties (see table 1 of [7]). We hope, however, that the expression 
(5.10). together with the graph of the function q(e) in figure 1, will become useful in future 
observations of other relativistic binary pulsars. 
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Appendix A. Adiabatic damping computation of the wave tail 

The method used in the text to compute the Fourier decomposition of the field is to express the 
field in the form (2.10), where the wave tail is split into two contributions, one extending over 
the 'recent past' of the source, and one extending over its 'remote past'. The latter remote past 
contribution involves a kernel whose behaviour at very early times allows the computation of 
each separate Fourier components. 

In this appendix we present a simpler method which is based on an 'adiabatic damping' 
regularization procedure, which can be seen as an adiabatic switching of the totd mass of the 
source in the remote past. Namely, we introduce in the integrand of the wave tail in (2.5) 
an exponential damping factor euv where or is some positive constant. We thus consider the 
following or-depending family of fields: 

(A.1) 
TheFourierdecompositionofthefields(A.1) canbestraightforwardlycomputed(whencu > 0) 
by means of the identity, valid for any complex number Z having Re(2) > 0, 

(A.2) 
1 

dx In xe-" = --(lnZ+ C) i+- 2 
where C is Euler's constant (see e.g. [661 p 573). The result is 

In the limit or + 0, (A.3) yields (3.3) which we obtained in the text. (Indeed we have 
In(-iw) = In IwI - i; sign (a).) 

Note that the identity (3.2) used in the method of the text can be derived from the identity 
(A.2) used in the method of this appendix by analytic continuation in 2 to purely imaginary 
values 2 = -ih. This shows the equivalence (in an analytic continuation sense) between the 
two methods. 
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Appendix B. The wave tail in the case of a fixed or decaying circular orbit 

We shall use the expression (2.10) of the wave form, which depends on an arbitrary constant I 
used to separate the remote past and the recent past contributions of the wave tail, and in which 
we replace the moments Kij (U,  N )  and l i , (U)  by the usual Newtonian quadrupole moment 
Q ; j ( U )  of the binary system (equation (4.1)). Thus, we write 

L Blancher and G Schifer 

where Ti,(U) denotes the wave tail 

In this appendix we shall make two computations of the wave tail by direct insertion of the 
quadrupole moment of the binary system into (B.2). First, we shall redo the computation in 
the case of a fixed circular orbit (the result has already been obtained in the text by means of a 
Fourier analysis), and then we shall do the computation in the case of a decaying orbit, whose 
dynamics is driven by radiation reaction. We shall see exactly the differences between the two 
cases, and how at the end the results are the same (in an appropriate regime) if we identify the 
constant frequency of the fixed orbit with the current value of the frequency of the decaying 
orbit. 

E l .  Case of afued circular orbit 

The components of the quadrupole moment of the binary system are given by 

(B.3a) 

(B.3b) 

(B.3c) 

where ao is the radius of the orbit, where WO is twice the orbital frequency (ai.: = 4GM) and 
where po is some constant phase. The components of the wave tail (B.2) can then be written 
in the form 

where Re and Im denote the real and imaginary parts, and where A is a constant complex 
amplitude given by 

The value of A readily follows from the identity (3.2) in the text. However, having in view a 
better comparison with the case of the decaying orbit below, we introduce, before using (3.2), 
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a dimensionless parameter { = 2n/("j-), and we compute the value of A in the limit { + 0. 
This will give the correct result since A does not depend on 7 nor on 6 .  We have 

The last integral is, when 6 + 0, of order O({), as can be shown for instance by integrating 
the integral by parts. Hence we write 

and, by using finally the identity (3.2) with h = &/{ +CO, we obtain 

In(200b) + C - - 12 

We have suppressed the terms of order o({) since these terms are zero (A does not depend 
on e). With (B.8), we recover the expression (4.7) computed in the text. 

82. Case of a decaying circular orbit 

We shall admit that the instantaneous components of the quadrupole moment are given by 

We denote by a(U) ,  w ( U )  and p(U) the radius, twice-frequency and associated phase of the 
decaying orbit. They are given by (4.8)-(4.10) in the text, namely 

(B.lOa) 
(B.lOb) 

(B.10~) 

where rc(U) = fc - U is the coalescing time. We introduce also, as in (4.1 l), the pammeter 

(B.11) 

and we do the computation in the case where the parameter { ( U )  is small. In this case, 
we can neglect the variations of the radius a ( U )  and of the frequency w ( U ) ,  and we can 
consider only the variation of the phase p(U). The errors made in this way are of order 
{(U). Thus, by inserting the components of the quadrupole moment (B.9) into the wave tail 
(B.2), we obtain error terms of order { ( U )  coming from the first term in (B.2), and also te rm 
involving .$(U - 7 x )  where x can take any value from 0 to +W. The absolute values of the 
latter terms can, however, be majored by { ( U )  times an absolutely convergent integral (using 
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( ( U  - T x )  < ( ( U )  for any x 2 O), and thus these terms are also of order ( ( U ) .  Hence we 
can write, similarly to (B.4), 

L Blanchet and G Schafir 

where the complex amplitude A(U) is now a function of time, and is given by 

At this stage, it is convenient to choose the constant 7 in (B.13) to be the coalescing time 
?,(U) left till coalescence from time U :  

7 = 5 ( U )  = tc - U .  (B.14) 

With this choice, we can easily express the early values of the radius and of the frequency (at 
times U - r , ( U ) x )  in terms of their current values (at time U )  and of some powers of 1 + x. 
We find 

a ( U  - Z ~ ( U ) X )  = a ( U ) ( 1  +x)lj4 (B.15a) 

w(u-?c(u)x)=o(u)(l + x ) - 3 / 8 .  (B.15b) 

Similarly, using also the expression of the parameter ( ( U )  of (B.l l),  we can express the phase 
as 

[(l + X)S'Z - 11. 
21r 8 q(U - S C ( U ) X )  = q(U) - -- e ( ( / )  5 (B.15c) 

Substituting (B.15)  into (B,13), we obtain the amplitude A(U) in the form 

(B.16) 

This expression should be compared to the expression (B.6) we obtained in the case of a fixed 
orbit. Now, when((U) <( I ,  weeasilyfindthatthelastintegralin(B.l6)isoforderO[((U)]. 
This can be shown by integrating by parts, Hence we have 

Thus, it remains to prove that the integral in (B.17) is in fact equivalent, when ( ( U )  + 0, to 
the simpler integral appearing in (B.7). Indeed, when ( ( U )  + 0, the phase of the integrand in 
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(B. 17) oscillates very rapidly, except when the variable x tends to zero. Thus, we expect that 
the main contribution of the integral will come from the neighbourhood of the limit x = 0, 
wherethetwointegrandsin (B.17)and(B.7)areequivalent. Adirectproof that(B.17)reduces 
to (B.7) when :(U) --f 0 is as follows. We denote the integral in (B.17) by 

(B.18) 

and we inhoduce the new variable y = :[(I + ')l - 11. we get 

where 01 = $[2i - 11 . Th e integral (B.19) is then reduced in several steps which can 
all be proved by integrations by parts and by neglecting small terms of order O[f (U) ]  and 
O [ f ( U )  Inf(U)]. We successively obtain 

(B.20) 

which shows that the function A(U)  of (B.17) can be rewritten as 

(B.21) 

and is thus given in the limit :(U) 4 0 by 

A ( U ) = - + i  ln(2w(U)b)+C-- +O[e(U)InE(U)l. (B.22) " [  2 12 111 

This establishes the fact that the wave field (4.12) in the case of the decaying orbit can be 
obtained, in the limit c ( U )  + 0, by formal replacement in the wave field (4.7) of the constant 
frequency WO by the varying frequency @(U), and by formal replacement of the linear phase 
u,,U + 'po by the integral ?(U) of the frequency @(U). 
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